
Introduction (Lecture 1)

January 22, 2010

A major goal of algebraic topology is to study topological spaces by means of algebraic invariants (such
as homology or cohomology). There is a balance to be struck here: we would like our invariants to be
simple enough to be tractable and computable, but rich enough to convey interesting information about
topology. In this course, we are going to study one example where both of these demands can be satisfied.
This is the so-called “chromatic” picture of stable homotopy theory, and it begins with Quillen’s work on
the relationship between cohomology theories and formal groups.

Let E be a multiplicative cohomology theory. For any topological space X, one can attempt to compute
the E-cohomology groups E∗(X) by means of the Atiyah-Hirzebruch spectral sequence

Hp(X;Eq(∗))⇒ Ep+q(X).

If X is the infinite dimensional projective space CP∞, then its ordinary cohomology groups are given
by H∗(X; Z) ' Z[t], where t ∈ H2(X; Z) is a generator. We say that E is complex-orientable if the
Atiyah-Hirzebruch spectral sequence degenerates at the second page. In this case, we get an isomorphism
E∗(CP∞) ' E∗(∗)[[t]] for some generator t ∈ E2(∗).

In ordinary cohomology, we can define t ∈ H2(CP∞; Z) to be the first Chern class c1(O(1)), where O(1)
denotes the universal line bundle on CP∞. Conversely, if we are given t then we can define the first Chern
class in general, using the fact that CP∞ is a classifying space for complex line bundles. Namely, if L is any
complex line bundle on a (nice) space X, then there exists a continuous map f : X → CP∞ (well-defined
up to homotopy) and an isomorphism L ' f∗ O(1). We can then define c1(L) = f∗t ∈ H2(X; Z).

If E is a complex-orientable cohomology theory, then the isomorphism E∗(CP∞) ' E∗(∗)[[t]] permits us
to define a Chern class which takes values in E-cohomology. Namely, if L is a line bundle on a space X and
f : X → CP∞ is defined as above, then we can define cE1 (L) = f∗t ∈ E2(X).

Warning 1. The definition of the Chern class cE1 (L) depends not only on the cohomology theory E,
but also on the choice of isomorphism E∗(CP∞) ' E∗(∗)[[t]] (that is, on the choice of t). A complex-
orientable cohomology theory E together with a choice of generator t ∈ E2(CP∞) is called a complex-oriented
cohomology theory.

We now ask: how well-behaved is this theory of E-valued Chern classes? For example, ordinary Chern
classes satisfy a multiplicativity formula

c1(L⊗L′) ' c1(L) + c1(L′).

Does the analogous formula hold in E-cohomology? Generally, the answer is no. However, we can say that
there is always some formula which allows us to express cE1 (L⊗L′) in terms of cE1 (L) and cE1 (L′). To see
this, it suffices to consider the universal example of a space with two complex line bundles. This is the space
CP∞×CP∞. Using the Atiyah-Hirzebruch spectral sequence, we get an isomorphism E∗(CP∞×CP∞) '
E∗(∗)[[u, v]]. Here u and v denote the pullbacks of t ∈ E2(CP∞) along the two projection maps π1, π2 :
CP∞×CP∞ → CP∞; in other words, we can identify u and v with the Chern classes of the universal line
bundles π∗1 O(1) and π∗2 O(1) on CP∞×CP∞. We also have a third line bundle O = π∗1 O(1)⊗π∗2 O(1). Then
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cE1 (O) = f(u, v) ∈ E∗(CP∞×CP∞) ' E∗[[u, v]]. By the method of the universal example, we deduce that
cE1 (L⊗L′) ' f(cE1 L, cE1 L′) for any pair of line bundles L and L′ on any space X (here we must take some
care with the meaning of this statement, since f is a power series and not a polynomial in general).

Example 2. For the usual theory of Chern classes, f is given by the formula f(u, v) = u+ v.

What can we say about the power series f? In general it is a power series rather than a polynomial, and
can be quite complicated. However, it is not arbitrary: it satisfies certain identities, which reflect the idea
that the tensor product of complex line bundles is commutative and associative up to isomorphism. More
precisely, we have

f(u, 0) = u = f(0, u)

f(u, v) = f(v, u)

f(u, f(v, w)) = f(f(u, v), w).

In general, if R is a commutative ring, then a power series f(u, v) ∈ R[[u, v]] satisfying the identities above
is called a formal group law over R.

We can summarize our discussion as follows: every complex-oriented cohomology theory E determines
a formal group law over the commutative ring Eeven(∗). This assignment fits into the general paradigm of
algebraic topology. A cohomology theory E should be regarded as a topological object: it can be represented
by a spectrum, which is a variation on the notion of a space. To this cohomology theory we assign an algebraic
object: a formal group law over a commutative ring. This assignment satisfies both of the requirements
posited at the beginning of this lecture:

(a) Though somewhat more complicated than an abelian group or a vector space, a formal group law is
a reasonably tractable mathematical object. In particular, formal group laws have been thoroughly
studied by algebraic geometers and number theorists.

(b) The formal group law associated to a complex-oriented cohomology theory E remembers a great deal
about E. In fact, one can often reconstruct E from its formal group law.

To elaborate on these points, we first note that there is a universal example of a formal group law. That
is, there is a commutative ring L and a formal group law f(u, v) ∈ L[[u, v]] which is “maximally complicated”,
in the sense that any other formal group law over a commutative ring R is obtained from f(u, v) by means
of a ring homomorphism L→ R. The ring L is called the Lazard ring in honor of Lazard, who proved that
L is a polynomial ring (in infinitely many generators).

According to a theorem of Quillen, the Lazard ring L has another incarnation: it is the coefficient ring
of the cohomology theory MU of complex bordism (which is universal among complex-oriented cohomology
theories). One can attempt to use this observation to construct an “inverse” to the above constructions.
Namely, suppose we are given a commutative ring R and a formal group law f(u, v) ∈ R[[u, v]], classified by
a map L → R. We can then attempt to define a new cohomology theory E (having coefficient ring R) by
the formula E∗(X) ' MU∗(X)⊗L R for finite complexes X (for this to be sensible, R should be equipped
with a suitable grading; we will suppress mention in the discussion which follows). This construction does
not always work: that is, E∗ does not always have the excision and Mayer-Vietoris exact sequences that
are required of cohomology theories. However, a fundamental result of Landweber gives a purely algebraic
criterion on φ which, if satisfied, guarantees that E∗ is a cohomology theory. One can use this criterion to
produce many interesting examples of cohomology theories.

Example 3. One can take R to be the ring of integers and f(u, v) to be the multiplicative formal group
given by f(u, v) = u+ v+uv. In this case, Landweber’s theorem applies and produces a cohomology theory,
namely, complex K-theory.
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Motivated by Example 3, it is natural to ask what other cohomology theories can be produced by means
of Landweber’s theorem: that is, starting with a map of affine schemes φ : SpecR → SpecL = A∞. First,
we should note that the map φ is not really fundamental. The formal group law associated to a cohomology
theory E depends not only on E, but also on a choice of complex orientation t ∈ E2(CP∞). The collection
of all such choices is acted on by the group G of coordinate changes

t 7→ t+ a1t
2 + a2t

3 + ...

Consequently, our real interest is not in the moduli space SpecL of formal group laws, but in the quotient
SpecL/G. This is a kind of algebraic stack, called the moduli stack of formal groups (more precisely, it is the
moduli stack of formal groups with trivialized Lie algebras). The main thrust of this course can be stated
as follows:

• The structure of the stable homotopy category is controlled by the geometry of the stack SpecL/G.

For example, every complex-orientable cohomology theory E determines a commutative ringR = Eeven(∗)
and a formal group over R, which we can think of as a map SpecR→ SpecL/G. This construction provides
the beginning of a rough dictionary:

Multiplicative cohomology theories Affine schemes over SpecL/G
Cohomology theories Quasi-coherent sheaves on SpecL/G

Complex bordism Moduli Space SpecL ' A∞ of formal group laws

· · · · · ·

As we will see over the course of the semester, these ideas give an extremely useful picture of the stable
homotopy category.
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Lazard’s Theorem (Lecture 2)

April 27, 2010

Let R be a commutative ring. We recall that a formal group law over R is a power series f(x, y) ∈ R[[x, y]]
satisfying the identities

f(x, 0) = f(0, x) = x

f(x, y) = f(y, x)

f(x, f(y, z)) = f(f(x, y), z).

We let FGL(R) denote the subset of R[[x, y]] consisting of all formal group laws over R. Note that a map of
commutative rings R→ R′ induces, by substitution, a map FGL(R)→ FGL(R′). In other words, FGL is a
functor from the category of commutative rings to the category of sets.

Any power series f(x, y) ∈ R[[x, y]] can be written as a formal sum f(x, y) =
∑
ci,jx

iyj , for some
coefficients ci,j ∈ R. However, for f to be a formal group law, the coefficients ci,j must satisfy some
constraints. For example, the first condition gives

ci,0 = ci,0 =

{
1 if i = 1
0 otherwise,

and the second condition gives ci,j = cj,i. The third condition imposes more complicated constraints on the
coefficients ci,j , which we will not write out in detail. However, we note that these constraints are simply
given by polynomial equations that the coefficients ci,j are forced to satisfy. We can summarize the discussion
as follows:

• Giving a formal group law over a ring R is equivalent to giving a collection of elements ci,j ∈ R
satisfying certain polynomial equations.

Let L denote the commutative ring Z[ci,j ]/Q, where Q is the ideal in Z[ci,j ] generated by the polynomial
constraints mentioned above. By construction, the power series f(x, y) =

∑
ci,jx

iyj defines a formal group
law over L. We can restate the previous assertion as follows:

• There is a formal group law f ∈ FGL(L) with the following universal property: for every commutative
ring R, evaluation on f determines a bijection Hom(L,R)→ FGL(R).

The commutative ring L is called the Lazard ring. Our goal in this lecture is to describe the structure of
L.

Remark 1. The existence of L is equivalent to the assertion that the functor FGL is corepresentable. By
general nonsense, the representability of FGL is equivalent to the following pair of properties, which are easy
to verify directly:

(1) The functor FGL carries limits of commutative rings to limits of sets.

(2) The functor FGL carries κ-filtered colimits of commutative rings to κ-filtered colimits of sets, provided
that κ is sufficiently large (in fact, we can take κ to be any uncountable cardinal: this reflects the fact
that a formal group law is determined by a countable number of parameters).
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We first note that the commutative ring Z[ci,j ] has a natural grading, where we define the degree of ci,j
to be 2(i+ j − 1). This grading is dictated by the requirement that if we let x and y have degree −2, then
the expression

f(x, y) =
∑
i,j

ci,jx
iyj

again has degree −2. Then the power series f(f(x, y), z) and f(x, f(y, z)) also have degree −2. It follows
that the coefficients of xiyjzk in the f(f(x, y), z) and f(x, f(y, z)) both have degree 2(i+j+k)−2 in the ring
Z[ci,j ]. Consequently, the grading on Z[ci,j ] descends to a grading on the quotient ring L = Z[ci,j ]/Q: that
is, L has the structure of a graded ring. Since c0,0 = 0 and c1,0 = c0,1 = 1 in L, it is actually a nonnegatively
graded ring, with L0 ' Z.

Remark 2. Our convention that the grading of L is even is irrelevant for this lecture. We introduce this
convention in order to be compatible with the gradings which appear in topology.

Remark 3. The existence of the above grading on L can be explained more abstractly as follows. The col-
lection of formal group laws admits an action of the multiplicative group Gm. That is, for every commutative
ring R, there is a canonical action of R× on FGL(R), given by

fλ(x, y) = λ−1f(λx, λy).

This determines an action of Gm on the affine scheme SpecL representing the functor FGL, which is the
same as the data of a grading of L. The nonnegativity of the grading reflects the observation that the action
of R× on FGL(R) extends to an action of the multiplicative monoid (R,×) on FGL (that is, f(λx, λy) is
formally divisible by λ). The isomorphism L0 ' Z reflects the observation that for any formal group f , we
have fλ(x, y) = x+ y when λ = 0).

Our goal in this lecture is to begin the proof of the following result:

Theorem 4 (Lazard). The Lazard ring L is isomorphic to a polynomial ring Z[t1, t2, . . .], where each ti has
degree 2i.

Theorem 4 implies that it is easy to write down formal group laws over a commutative ring R: one just
needs to select a countable sequence of elements in R. In particular, formal group laws exist in abundance.
Where do these formal group laws come from? We can get a good supply by combining the following pair
of observations:

(a) The power series f(x, y) = x+ y is a formal group law (over any ring R).

(b) If f(x, y) is a formal group law over the ring R and we are given some substitution g(x) = x+ b1x
2 +

b2x
3 + · · · , then the power series gf(g−1(x), g−1(y)) is also a formal group law over R.

In particular:

(c) If g is defined as above, then g(g−1(x) + g−1(y)) is a formal group law over the polynomial ring
Z[b1, b2, . . .].

This formal group law is classified by a map φ : L→ Z[b1, b2, . . .]. We will soon learn that this map is an
isomorphism over the rational numbers (Lemma 10). That is, in characteristic zero, every formal group law
is obtained from the additive formal group law f(x, y) = x+ y by a change of variables. This is not true in
positive characteristic (otherwise, this course would be very short).

Remark 5. The map φ : L→ Z[b1, b2, . . .] is compatible with the gradings, if we let each bi have degree 2i.
To see this, it suffices to note that if each bi has degree 2i, then g(g−1(x) + g−1(y)) has degree −2 when x
and y are both given degree −2.
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Let I denote the ideal in L consisting of elements of positive degree, and let J denote the ideal in
Z[b1, b2, . . .] generated by elements of positive degree (that is, the ideal generated by b1, b2, . . .). Then J/J2

can be identified with the free abelian group on generators {bi}i>0. Note that the quotient I/I2 inherits a
grading from the grading of L. The main step in the proof of Theorem 4 is the following calculation:

Lemma 6. For every integer n > 0, the ring homomorphism map φ : L→ Z[b1, b2, . . .] induces an injection
(I/I2)2n → (J/J2)2n ' Z. The image of this map is pZ if n+ 1 is a prime power pf , and Z otherwise.

We will prove Lemma 6 in the next lecture. For now, let us collect some of the consequences.

Corollary 7. For every integer n > 0, the abelian group (I/I2)2n is (canonically) isomorphic to Z.

In particular, we can choose homogeneous elements tn ∈ I2n = L2n lifting generators for (I/I2)2n ' Z.
This choice of generators determines a map of graded rings θ : Z[t1, t2, . . .]→ L.

Lemma 8. The map θ is surjective.

Proof. We prove by induction on n that θ induces a surjection in degree 2n. The inductive hypothesis shows
that the image of θ contains (I2)2n. Since the image of θ contains a generator for (I/I2)2n ' Z, it contains
I2n = L2n.

We now complete the proof of Theorem 4 as follows:

Lemma 9. The composite map ψ : Z[t1, t2, . . . , ]
θ→ L

φ→ Z[b1, b2, . . .] is injective. In particular, the map θ
is injective.

Since the polynomial rings Z[t1, t2, . . .] and Z[b1, b2, . . .] are torsion-free, they inject into their rational-
izations Q[t1, t2, . . .] and Q[b1, b2, . . .]. Lemma 9 is therefore an immediate consequence of the following:

Lemma 10. The map ψQ : Q[t1, t2, . . .]→ Q[b1, b2, . . .] is an isomorphism of commutative rings.

Proof. Let J ′ denote the ideal in Q[t1, t2, . . .] generated by the elements ti. Then J ′/(J ′)2 is isomorphic
to the free Q-vector space generated by t1, t2, . . .. Using Lemma 6, we see that φQ induces a surjection
J ′/(J ′)2 → (J/J2)Q. Repeating the proof of Lemma 8, we see that ψQ is surjective. Since the vector spaces
Q[t1, t2, . . .] and Q[b1, b2, . . .] have the same dimension in every graded degree, we deduce that ψQ is also
injective.
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Lazard’s Theorem (Continued) (Lecture 3)

January 28, 2010

Our goal in this lecture is to complete the proof of Lazard’s theorem. In the last lecture, we were reduced
to proving the following result:

Lemma 1. Let φ : L→ Z[b1, b2, . . .] be the ring homomorphism classifying the formal group law g(g−1(x) +
g−1(y)), where g is the power series g(x) = x + b1x

2 + b2x
3 + · · · . Let I ⊆ L be the ideal consisting of

elements of positive degree, and let J ⊆ Z[b1, b2, . . .] be defined likewise. Then, for every integer n > 0, φ
induces an injection (I/I2)2n → (J/J2)2n ' Z. The image of this map is pZ if n+ 1 is a prime power pf ,
and Z otherwise.

We regard n as a positive integer which is fixed throughout this lecture. Recall that for any commutative
ring R, there is a canonical bijection ε : Hom(L,R) → FGL(R), where FGL denotes the collection of
formal group laws f(x, y) ∈ R[[x, y]] over R. Suppose now that R is a graded ring, and let Homgr(L,R) ⊆
Hom(L,R) denote the collection of all graded ring homomorphisms from L to R. Then ε restricts to a
bijection Homgr(L,R) ' FGLgr(R), where FGLgr(R) denotes the collection of formal group laws f(x, y) =∑
ai,jx

iyj ∈ R[[x, y]] where the coefficients ai,j have degree 2(i + j − 1) (in other words, the collection of
all formal group laws where f(x, y) is homogeneous of degree −2, when we regard the variables x and y as
having degree −2).

The main point of Lemma 1 is to show that the abelian group (I/I2)2n is isomorphic to Z: in other words,
that it is free on one generator. Equivalently, we wish to show that for any abelian group M , the collection
of group homomorphisms Hom((I/I2)2n,M) can be identified with M . Let us denote this collection of group
homomorphisms by F (M): that is, we let F be the functor corepresented by (I/I2)2n (from the category
of abelian groups to the category of sets). To proceed further, we would like to relate F to the functor
corepresented by L. To this end, let us regard Z⊕M as a graded commutative ring, with the “square zero”
multiplication law (a,m)(b,m′) = (ab, am′ + bm) and the grading

(Z⊕M)k =


Z if k = 0
M if k = 2n
0 otherwise.

Unwinding the definitions, we see that evaluation in degree 2n induces a bijection Homgr(L,Z ⊕ M) →
Hom((I/I2)2n,M) = F (M). In other words, F (M) can be identified with the set FGLgr(Z⊕M) of (homo-
geneous) formal group laws over Z⊕M . Any such formal group law can be written in the form

f(x, y) = x+ y +
∑

i+j=n+1

mi,jx
iyj .

In order for such a polynomial to define a formal group law, the coefficients mi,j need to satisfy some
conditions. Since the multiplication on Z ⊕M is square-zero, it is possible to make these conditions very
explicit. For example, the requirement that f(x, 0) = f(0, x) = x translates into equations m0,n+1 =
mn+1,0 = 0, while the commutativity of f is the requirement mi,j = mj,i. Associativity is only slightly more
complicated: we require that for every triple of integers i, j, and k, the coefficient of xiyjzk appearing in the
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expressions f(f(x, y), z) and f(x, f(y, z)) are the same. This follows immediately from the earlier conditions
if i, j, or k is equal to zero. If i, j, k > 0, then a simple computation (using the fact that M2 = 0) shows that
the coefficient in f(f(x, y), z) is given by

(
i+j
j

)
mi+j,k if i+ j + k = n+ 1 (and is zero otherwise). Similarly,

the relevant coefficient in f(x, f(y, z)) is given by
(
j+k
j

)
mi,j+k. We can summarize our discussion as follows:

Lemma 2. The functor F carries an abelian group M to the collection of all sequences {mi,j ∈M}i+j=n+1

satisfying the conditions
m0,n+1 = mn+1,0 = 0 mi,j = mj,i(

i+ j

j

)
mi+j,k =

(
j + k

j

)
mi,j+k if i, j, k > 0.

We want to understand how to find all solutions to the equations appearing in Lemma 2. We can start
by considering the solutions that we get using the homomorphism φ : L→ Z[b1, b2, . . .] appearing in Lemma
1. This homomorphism induces a map (I/I2)2n → (J/J2)2n ' Z, and therefore gives rise to a map

λ : M = Hom(Z,M)→ Hom((J/J2)2n,M)→ Hom((I/I2)2n,M) = F (M).

To understand this map more explicitly, we note that M ' Hom((J/J2)2n,M) can be identified with
Homgr(Z[b1, b2, . . .],Z⊕M) by assigning to each m ∈ M the ring homomorphism ψm : Z[b1, . . .] → Z⊕M
which carries bn to m and all other bi to zero. In this case, the change-of-variable transformation g(x) =
x+ b1x

2 + · · · can be written as g(x) = x+mxn+1. Since m2 = 0 in Z⊕M , the inverse transformation is
simply given by g−1(x) = x−mxn+1. Then g defines the formal group law

f(x, y) = g(g−1(x) + g−1(y)) = g(x−mxn+1 + y −myn+1) = x+ y +m((x+ y)n+1 − xn+1 − yn+1).

We conclude that the map λ : M → F (M) carries an element m ∈ M to the sequence {mi,j}i+j=n+1 given
by

mi,j =

{
0 if i = 0 or j = 0(
n+1
i

)
m otherwise.

These are the “obvious” solutions to the equations of Lemma 2.
But sometimes there are more solutions. For example, if the binomial coefficients {

(
n+1
i

)
}0<i<n+1 have

greatest common divisor d, then we can write down another solution given by

mi,j =

{
0 if i = 0 or j = 0
(n+1

i )
d m otherwise.

It is therefore of interest to determine d. For this, we will need the following combinatorial fact:

Lemma 3. Let p be a prime number, and suppose that a and b are nonnegative integers with base p expansions

a =
∑

aip
i b =

∑
bip

i

Then
(
a
b

)
is congruent to the product

∏(ai

bi

)
modulo p.

Proof. Let S be a set of size a. We can partition S into subsets Sα whose sizes are powers of p, with exactly
ai subsets of size pi. Regard each Sα as acted on by the cyclic group Gα = Z/piZ. These actions together
determine an action of G =

∏
αGα on S. Let T be the collection of all b-element subsets of S, so that(

a
b

)
= |T |. The set T is acted on by G. Since G is a p-group, every nontrivial orbit of G has size divisible

by p. Thus |T | is congruent modulo p to the cardinality of TG, the set of G-fixed points of T . Note that a
G-fixed point of T is a subset S0 ⊆ S of cardinality b which is a union of some of the subsets Sα. There are
precisely

∏(ai

bi

)
ways that these subsets can be chosen.
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Corollary 4. Let i and j be nonnegative integers, and let p be a prime number. Then the binomial coefficient(
i+j
i

)
is not divisible by p if and only if each digit in the base p expansion of i+ j is at least as large as the

corresponding digit of i in base p: in other words, if and only if the sum i + j can be computed in base p
“without carrying”.

Corollary 5. Let d be the greatest common divisor of the binomial coefficients {
(
n+1
i

)
}0<i<n+1. Then

d =

{
p if n+ 1 = pf

1 otherwise.

Proof. If n+ 1 is not a power of p, then we can nontrivially decompose n+ 1 as a sum i+ j, where the sum
of i and j is computed in base p without carrying; it follows that

(
n+1
i

)
is not divisible by p. If n+ 1 = pf ,

then there is no such decomposition, so that p is a common divisor of {
(
n+1
i

)
}0<i<n+1. To see that it is the

greatest common divisor, we note that p2 does not divide the binomial coefficient
(
pf

pf−1

)
.

We let λ′ : M → F (M) be the map which carries m ∈M to the sequence

mi,j =

{
0 if i = 0 or j = 0
(n+1

i )
d m otherwise.

We will prove the following:

Proposition 6. The map λ′ is an isomorphism.

It follows from Proposition 6 that the functor F (M) is corepesentable by the abelian group Z: that is,
we get an isomorphism (I/I2)2n ' Z. Moreover, the map λ factors as a composition

M
d→M

λ′→ F (M),

so that the map
Z ' (I/I2)2n → (J/J2)2n ' Z

is given by multiplication by d. This completes the proof of Lemma 1.
To prove Proposition 6, it suffices to show that λ′ induces an isomorphism M(p) → F (M)(p) ' F (M(p))

after localizing at every prime p. In other words, we may assume that M is a Z(p)-module.

Lemma 7. Let {mi = mi,j}i+j=n+1 be an element of F (M). Then:

(a) If mi = 0, then mn+1−i = 0.

(b) If mi = 0 and the sum i+ j is computed in base p without carrying, then mi+j = 0 vanishes.

Proof. Assertion (a) follows by symmetry. To prove (b), we use the associativity formula(
n+ 1− i

j

)
mi =

(
i+ j

j

)
mi+j .

If mi vanishes, then the left hand side vanishes, so (since
(
i+j
j

)
is not divisible by p, by Corollary 4) we

conclude that mi+j vanishes.

Proof of Proposition 6 when n+ 1 = pf . Let χ : F (M) → M be given by extracting the coefficient mpf−1 .

Then the composition χ ◦ λ′ : M → M is given by multiplication by
( pf

pf−1)
p , which is not divisible by p.

Consequently, χ ◦ λ′ is an isomorphism, which proves that λ′ is injective. To show that λ′ is surjective, it
suffices to show that χ is injective. Let {mi} ∈ F (M) belong to the kernel of χ, so that mpf−1 vanishes. Part
(b) of Lemma 7 shows that mk vanishes for pf−1 ≤ k < pf . Using symmetry, we deduce that mk vanishes
for all 0 < k < pf .
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Proof of Proposition 6 when n+ 1 6= pf . Let pe be the largest power of p which divides n + 1. We let
χ : F (M)→M be given by extracting the coefficient of mpe . Then χ◦λ′ : M →M is given by multiplication

by (n+1
pe )
d ; here d is either 1 or some prime distinct from p, and the binomial coefficient

(
n+1
pe

)
is not divisible

by p by Corollary 4. As before, we deduce that χ ◦ λ′ is an isomorphism, λ′ is injective, and we are reduced
to proving that χ is injective. Suppose that {mi} ∈ F (M) belongs to the kernel of χ. Then mpe = 0.

Assume e > 0 (if not, ignore this step). By symmetry, we get mn+1−pe = 0. Since n + 1 − pe−1 can be
obtained as a sum of n+ 1− pe and (p− 1)pe−1 in base p without carrying, we deduce that mn+1−pe−1 = 0.
By symmetry, we get mpe−1 = 0.

Now choose any nontrivial decomposition n + 1 = i + j. We wish to prove that mi = mj = 0. Since
n+ 1 has a nontrivial coefficient on pe in its base p expansion, we conclude that either i or j must contain a
nonzero coefficient on pe or pe−1 in its base p expansion. Without loss of generality, we may suppose that i
has a nonzero pa coefficient in its base p-expansion, with a ∈ {e− 1, e}. Then we can write i = pa + (i− pa)
in base p without carrying. Since mpa vanishes by the above argument, we conclude from Lemma 7 that
mi = 0.
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Complex-Oriented Cohomology Theories (Lecture 4)

February 1, 2010

In this lecture, we will introduce the notion of a complex-oriented cohomology theory E. We will generally
not distinguish between a cohomology theory E and the spectrum that represents it. The E-cohomology
groups of a space X are given by

En(X) = π−nE
X = [X,Ω∞−nE] = Hom(Σ∞X,ΣnE),

while the E-homology groups of X are given by En(X) = πn(E ⊗ Σ∞X).

Warning 1. In this class, we will not employ the usual notations in dealing with spectra. Instead we will
denote the smash product with the symbol ⊗, and the coproduct by ⊕.

We will say that a cohomology theory is multiplicative if its representing spectrum E is equipped with a
multiplication

E ⊗ E → E

which is associative and unital up to homotopy. We will generally also assume that E is homotopy commu-
tative, though it is sometimes convenient to relax this assumption.

Definition 2. A multiplicative cohomology theory E is complex-orientable if the map E2(CP∞)→ E2(S2)
is surjective. Here we identify the 2-sphere S2 with CP1 ⊆ CP∞.

We will henceforth regard S2 and CP∞ as pointed spaces. A choice of base point gives canonical
decompositions

E2(CP∞) ' Ẽ2(CP∞⊕E2(∗) E2(S2) ' Ẽ2(S2)⊕ E2(∗);

here the Ẽ denotes reduced cohomology with coefficients in E. Note that Ẽ2(S2) ' E0(∗) ' π0E is equipped
with a canonical unit element t. Since the image of the map θ : Ẽ(CP∞)→ Ẽ2(S2) is a (π0E)-module, θ is
surjective if and only if its image contains t. In other words:

• A multiplicative cohomology theory E is complex-orientable if and only if there exists an element
t ∈ Ẽ2(CP∞) such that θ(t) = t is the canonical generator of Ẽ2(S2).

We will refer to a choice of t ∈ Ẽ2(CP∞) ⊆ E2(CP∞) as a complex orientation of E.

Remark 3. Let E be a multiplicative cohomology theory and let E′ be its connective cover. Then the
canonical map Ẽ′

2
(X) → Ẽ2(X) is an isomorphism whenever X is simply connected. It follows that E is

complex orientable if and only if E′ is complex-orientable: better yet, there is a bijection between complex
orientations of E and complex orientations of E′.

Remark 4. We can think of t as encoding a pointed map S2 → Ω∞E. A complex orientation of E is
an extension of this map to CP∞. The existence of such a map can often be established by obstruction
theory. For example, if we are already given an extension of t to CPn, then there is an obstruction to further
extending to CPn+1 which lies in the homotopy group π2n+1Ω∞E = π2n+1E = E−2n−1(∗). In particular, if
we have π3E = π5E = . . ., then E is complex-orientable.
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Example 5. Ordinary cohomology (with coefficients in any commutative ring R) is complex-orientable. In
fact, the restriction map H2(CP∞;R)→ H2(S2;R) is an isomorphism.

Example 6. Complex K-theory is complex-orientable. This follows from Remark 4, since πiK = 0 whenever
i is odd. In this case, the complex orientation is not unique. However, there is a canonical complex
orientation, given by the class t ∈ K2(CP∞) ' K0(CP∞) = [O(1)] − 1, where the first map is Bott
periodicity and O(1) denotes the universal complex line bundle on CP∞.

We next show that the existence of a complex orientation on E often forces the Atiyah-Hirzebruch spectral
sequence for E to degenerate. We begin with a degeneration criterion (not the most general, but sufficient
for our purposes).

Proposition 7. Let X be a space and assume that each of the homology groups Hn(X; Z) is a free abelian
group on generators {hα,n}α∈Bn . Let cα,n ∈ Hn(X; Z) ' Hom(Hn(X; Z), Z) be defined by the formula

cα,n(hβ,n) =

{
1 if α = β

0 otherwise.

Let E be a multiplicative cohomology theory and let τ≤0E denote its truncation, so that πiτ≤0E ={
πiE if i ≤ 0
0 otherwise.

. The unit S → E determines a map of spectra HZ ' τ≤0S → τ≤0E. Under this

map, the homology classes hn,α have images h′n,α ∈ (τ≤0E)n(X) and the cohomology classes cn,α have
images c′n,α ∈ (τ≤0E)n(X). Assume that one of the following conditions is satisfied:

(∗) Each of the homology classes h′n,α can be lifted to a class h′′n,α ∈ En(X).

(∗′) Each of the groups Hn(X; Z) is finitely generated, and each of the cohomology classes c′n,α can be lifted
to a class c′′n,α ∈ En(X).

Then:

(1) The smash product E ⊗ Σ∞X+ is equivalent, as an E-module, to a coproduct
⊕

n,α∈Bn ΣnE.

(2) The function spectrum EX is equivalent to a product
∏
n,α∈Bn Σ−nE.

(3) We have (noncanonical) isomorphisms E∗(X) ' π∗E ⊗H∗(X) and E∗(X) ' Hom(H∗(X), π∗(E)).

Proof. We will prove (1); assertions (2) and (3) are obvious consequences. Let Y denote the suspension
spectrum Σ∞X+. In what follows, we will not use that Y is a suspension spectrum: only that Y is connective
with freely generated homology. We construct a sequence of spectra

Y0 → Y1 → . . .

having colimit Y , with the following additional properties:

(a) The map Yn → Y induces an isomorphism in homology in degrees ≤ n. In particular, Y is homotopy
equivalent to the colimit of the sequence {Yn}.

(b) The spectrum Yn is build from finitely many spheres of dimension ≤ n; in particular, the cohomology
groups Hk(Yn; Z) vanish for k > n.

Assume that Yn−1 has been constructed, and let Zn denote the cofiber of the map Yn−1 → Y . Then Zn
is (n− 1)-connected, and the map Hn(Y ; Z)→ Hn(Zn; Z) is an isomorphism. By the Hurewicz theorem, the
image of each of the homology classes hn,α is represented by a map Sn → Zn. Let Z ′n =

⊕
α∈Bn S

n and let
φn : Z ′n → Zn be the induced map, so that we have a cofiber sequence

Z ′n → Zn → Z ′′n .
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We now define Yn to be the homotopy fiber product Y ×Zn Z ′n; in other words, Yn is the homotopy fiber of
the composite map Y → Zn → Z ′′n . It is easy to see that (a) and (b) hold.

Now suppose that (∗) is satisfied. Each h′′n,α is represented by a map of E-modules ΣnE → E ⊗ Y . We
will prove:

(c) The map θ :
⊕

n,α∈Bn ΣnE → E ⊗ Y is a homotopy equivalence.

To prove (c), it suffices to show that θ is k-connected for every value of k. This is obvious for k = 0. Assume
that k > 0. Note that that φ0 induces an E-module map

⊕
α∈B0

E ' E ⊗ Z ′0 → E ⊗ Y , which we can
identify with a sequence of homology classes bα,0 ∈ E0(Y ). By construction, the classes bα,0 lift the classes
h′α,0. Since Y is connective, we have (τ≥1E)0(Y ) ' 0 so that the map E0(Y ) → (τ≤0E)0(Y ) is injective; it
follows that bα,0 = h′′α,0. We therefore have a map of cofiber sequences⊕

α∈B0
E //

θ′

��

⊕
n,α∈Bn ΣnE //

θ

��

⊕
n>0,α∈Bn ΣnE

θ′′

��
Z ′0 // Y // Z ′′0 .

Since θ is a homotopy equivalence, to prove that θ′ is k-connective it suffices to show that θ′′ is k-connective.
This follows from the inductive hypothesis, applied to the connective spectrum Σ−1Z ′′0 .

Now suppose that condition (∗′) is satisfied. We will prove, using induction on n, that each of the maps
E ⊗ Y → E ⊗ Zn admits a splitting sn : E ⊗ Zn → E ⊗ Y , so that the cohomology classes c′′α,n give maps

φα : Zn → E ⊗ Zn → E ⊗ Y
c′′α,n→ ΣnE.

Using (b), we deduce that the map (τ≤0E)nZn → (τ≤0E)nY is injective, so each the image of ψα ∈ En(Zn)→
(τ≤0E)n(Zn) coincides with the image of cα,n ∈ Hn(Y ; Z) ' Hn(Zn;Z)→ (τ≤0E)n(Zn).

Assume that sn−1 has been constructed. The maps {ψα}α∈Bn−1 together yield a map Zn →
⊕

α ΣnE '
E ⊗ Z ′n, which we can identify with an E-module map sn : E ⊗ Zn → E ⊗ Z ′n. Moreover, the compatibility
of the classes φα with cαn shows that the composition

E ⊗ Z ′n
ψ→ E ⊗ Zn

φ→ E ⊗ Z ′n

is the identity; that is, sn is a splitting of the projection E ⊗ Y → E ⊗ Zn.
It now follows that E ⊗ Y ' lim−→(E ⊗ Yn) ' lim−→n

⊕
m≤nE ⊗ Z ′m.

Example 8. Let X = CPn, and let t ∈ E2(X) be a complex orientation on a multiplicative cohomology
theory E. Then the cohomology classes {1, t, t2, . . . , tn} satisfy the hypotheses of Proposition 7. It follows
that the classes 1, t, t2, . . . , tn form a basis for E∗(CPn) over π∗E. We claim that tn+1 = 0. To prove this, we
may replace E by its connective cover and thereby assume that E is connective: then tn+1 ∈ E2n+2(CPn)
vanishes since CPn has dimension < 2n + 2. It follows that we have a ring isomorphism E∗(CPn) '
(π∗E)[t]/(tn+1). Writing CP∞ = lim−→CPn, we get

E∗(CP∞) = lim←−E
∗(CPn) ' lim←−(π∗E)[t]/(tn+1) ' (π∗E)[[t]].

Here the potential lim1-terms vanish because the maps (π∗E)[t]/(tn+1)→ (π∗E)[t]/(tm+1) are surjective.

Example 9. IfX = CPm×CPn, the same reasoning gives an isomorphism E∗(X) ' (π∗E)[x, y]/(xm+1, yn+1).
Passing to the limit as before, we get an isomorphism E∗(CP∞×CP∞) = (π∗E)[[x, y]].

The space CP∞ is an Eilenberg-MacLane space K(Z, 2), and can therefore be realized as a topological
abelian group. In fact, it is easy to realize CP∞ as a topological monoid: we can define CP∞ to be the
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projectivization (V − {0})/C∗ for any complex vector space V of infinite dimension. Taking V to be the
underlying vector space of the ring C[x], we get a commutative and associative multiplication on CP∞. The
multiplication map

CP∞×CP∞ → CP∞

classifies the operation of forming tensor products of complex line bundles. If E is a complex-oriented
cohomology theory, then we get a pullback map on E-cohomology

(π∗E)[[t]] ' E∗(CP∞)→ E∗(CP∞×CP∞) ' (π∗E)[[x, y]].

We let f(x, y) ∈ (π∗E)[[x, y]] denote the image of t under this map. (The map is entirely determined by
f(x, y), since it is continuous with respect to the “inverse limit” topologies on the power series rings in
question.)

The associativity and commutativity of the multiplication CP∞ imply the following:

Proposition 10. Let E be a complex-oriented multiplicative cohomology theory. Then the above construction
determines a formal group law f(x, y) ∈ R[[x, y]], where R is the commutative ring ⊕nπ2nE. This formal
group law is compatible with the natural grading of R: that is, the expression f(x, y) has degree −2, if we let
x and y have degree −2.

We close by describing another application of Proposition 7. Fix an integer n ≥ 0, and let X = BU(n)
be the classifying space of the unitary group U(n). There is a canonical map

θ : (CP∞)n ' BU(1)× · · · ×BU(1)→ BU(n).

This map classifies the construction (L1, . . . ,Ln) 7→ L1⊕ · · ·⊕Ln, which takes the direct sum of a collection of
complex line bundles. Since the formation of direct sums is commutative up to isomorphism, the map θ is Σn-
equivariant, up to homotopy. It therefore induces a map H∗(BU(n); Z) → H∗((CP∞)n; Z) ' Z[t1, . . . , tn],
whose image is contained in the subgroup Z[t1, . . . , tn]Σn of symmetric polynomials in n-variables. This ring
of invariants is given by Z[c1, c2, . . . , cn], where ci is the ith elementary symmetric function on (t1, . . . , tn).
In fact, this construction yields an isomorphism H∗(BU(n),Z)→ Z[c1, . . . , cn]; under this isomorphism, the
cohomology class ci corresponds to the ith Chern class of the universal bundle.

Dually, can write H∗(CP∞; Z) = Z{β0, β1, . . .}, where {βi} is the dual basis to {ti}. Then H∗(BU(n); Z)
is given by H∗(CP∞; Z)⊗nΣn

= Symn H∗(CP∞; Z). In particular, it is a free Z-module whose generators can
be lifted to H∗((CP∞)n; Z).

Let E be a complex-oriented multiplicative cohomology theory. Then we have a canonical isomorphism
E∗(CP∞) ' (π∗E)[[t]]. The (topological) basis {ti} for this cohomology has a dual basis {βi} for E∗(CP∞)
over π∗E. Using the map θ, we get homology classes {βi1βi2 . . . βin}i1≤···≤in in E∗(BU(n)) which lift the
corresponding basis for the Z-homology of BU(n). It follows from Proposition 7 that E∗(BU(n)) is freely
generated by the classes {βi1βi2 . . . βin}0≤i1≤···≤in over π∗E.

The same argument shows that E∗(BU(n) × BU(n)) is given by E∗(BU(n)) ⊗π∗E E∗(BU(n)). The
diagonal map BU(n) → BU(n) × BU(n) determines a comultiplication on E∗(BU(n)). When n = 0, this
comultiplication is dictated by the structure of the multiplication on E∗(BU(1)) = (π∗E)[[t]]: namely, it
is given by δβn =

∑
i+j=n βi ⊗ βj . Since θ induces a map of coalgebras E∗(BU(1)n) → E∗(BU(n)), this

completely determines the comultiplication on E∗(BU(n)). More informally, we can say that the comul-
tiplication on E∗(BU(n)) is given by the same formulas as in the case of integral homology. It follows
that multiplication on E∗(BU(n)) can be described in the same way as the multiplication on the ordinary
cohomology of E∗(BU(n)). More precisely, we have a canonical isomorphism

E∗(BU(n)) ' (π∗E)[[c1, . . . , cn]]

where ci is dual to βi1 (with respect to the basis consisting of monomials in the βi). We can think of the ci
as analogues of the Chern classes in E-cohomology.
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Complex Bordism (Lecture 5)

February 4, 2010

In this lecture, we will introduce another important example of a complex-oriented cohomology theory:
the cohomology theory MU of complex bordism. In fact, we will show that MU is universal among complex-
oriented cohomology theories.

We begin with a general discussion of orientations. Let X be a topological space and let ζ be a vector
bundle of rank n on X. We may assume without loss of generality that ζ is equipped with a metric,
so that the unit ball bundle B(ζ) → X and the unit sphere bundle S(ζ) → X are well-defined. If E
is an arbitrary cohomology theory, we can define the twisted E-cohomology E∗−ζ(X) to be the relative
cohomology E∗(B(ζ), S(ζ)).

Example 1. If ζ is the trivial bundle of rank n, then B(ζ) ' Bn ×X and S(ζ) ' Sn−1 ×X. In this case,
we have a canonical isomorphism E∗−ζ(X) = E∗(X ×Bn, X × Sn−1) ' E∗−n(X).

If E is a multiplicative cohomology theory, then E∗−ζ(X) is a module over E∗(X).

Definition 2. Let ζ be a vector bundle of rank n on a space X, and let E be a multiplicative cohomology
theory. An E-orientation of ζ is a cohomology class u ∈ En−ζ(X) ' En(B(ζ), S(ζ)) such that:

(∗) For every point x ∈ X, the restriction x∗(u) ∈ En−ζx({x}) ' E0({x}) is a generator of E∗({x}) ' π∗E
(as a π∗E-module).

In this case, we say that u is a Thom class for ζ in E-cohomology.

Remark 3. The identification En−ζx({x}) ' E0({x}) is noncanonical: it depends on a trivialization of the
fiber ζx. This dependence is not very strong, since the orthogonal group O(n) has only two components: the
resulting elements of E0({x}) are off by a sign if we choose trivializations with different orientations.

Remark 4. A consequence of Definition 2 is that the Leray-Serre spectral sequence for the fibration S(ζ)→
X degenerates and gives an identification E∗(X) ' E∗+n−ζ(X), given by multiplication by u.

Remark 5. In the setting of Definition 2, it suffices to check the condition at one point x in each connected
component of X.

Our next goal is to show that if E is a complex-oriented cohomology theory, then all complex vector
bundles have a canonical E-orientation. To prove this, it suffices to consider the universal case: that is, the
case of a universal bundle ζ of (complex) rank n over the classifying space BU(n). Recall that BU(n) can
be realized as the quotient of a contractible space EU(n) by a free action of the unitary group U(n). In this
case, the subgroup U(n− 1) also acts freely on EU(n), so the quotient EU(n)/U(n− 1) is a model for the
classifying space BU(n − 1). This realization gives us a fibration BU(n − 1) → BU(n), whose fiber is the
quotient group U(n)/U(n − 1) ' S2n−1. In fact, this sphere bundle can be identified with the unit sphere
bundle S(ζ). Since B(ζ) ' BU(n), we get canonical isomorphisms E∗−ζ(BU(n)) = E∗(BU(n), BU(n− 1)).

We have computed these groups: the group E∗(BU(n)) is a power series ring (π∗E)[[c1, . . . , cn]] and the
group E∗(BU(n − 1)) is a power series ring (π∗E)[[c1, . . . , cn−1]]. The restriction map θ : E∗(BU(n)) →
E∗(BU(n−1)) is a surjective ring homomorphism. It follows that the relative cohomology group E∗(BU(n), BU(n−
1)) can be identified with the kernel of θ: that is, with the ideal cn(π∗E)[[c1, . . . , cn]]. This is in fact a free
module over E∗(BU(n)), which suggests the following:
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Proposition 6. The cohomology class cn ∈ E2n(BU(n), BU(n− 1)) ' E2n−ζ(BU(n)) is a Thom class (so
that the universal bundle ζ on BU(n) has a canonical E-orientation).

Proof. We must check that condition (∗) holds at every point of BU(n). Since BU(n) is connected, it will
suffice to check (∗) at any points of BU(n). We may therefore replace ζ by its pullback along the map
f : BU(1)n → BU(n) and cn by its image in

E∗−f
∗ζ(BU(1)n) ' (t1 . . . tn)(π∗E)[[t1, . . . , tn]] ⊆ (π∗E)[[t1, . . . , tn]] ' E∗(BU(1)n),

which can be identified with the product t1 . . . tn. Since f∗ζ is a direct sum ⊕1≤i≤np
∗
i O(1) of pullbacks

of the universal line bundle O(1) on BU(1) ' CP∞ along the projection maps pi : BU(1)n → BU(1), we
can reduce to proving the assertion in the case n = 1. In this case, E∗−ζ(BU(1)) can be identified with
the reduced cohomology Ẽ∗(CP∞), and the condition that u ∈ Ẽ2(CP∞) be an orientation of O(1) is that
it maps to a unit when restricted to Ẽ2(S2) ' π0E. Our complex orientation is even better: it maps to
1 ∈ π0E.

If ζ ′ is any complex vector bundle of rank n on any (nice) space X, then we can write ζ ′ = f∗ζ for some
classifying map f : X → BU(n). We can then define an orientation uζ′ ∈ E2n−ζ′(X) to be the pullback of
cn ∈ E2n−ζ(BU(n)).

By construction, our Chern classes in E-cohomology have the same behavior with respect to direct sums
of vector bundles as the usual Chern classes: namely, we have

cn(ζ ⊕ ζ ′) =
∑
i+j=n

ci(ζ)cj(ζ ′).

In particular, if ζ and ζ ′ have ranks a and b, then we have ca+b(ζ+ ζ ′) = ca(ζ)cb(ζ ′). We conclude from this:

(1) If ζ and ζ ′ are complex vector bundles of rank a and b on a space X, then the Thom classes uζ ∈
E2a−ζ(X) and uζ′ ∈ E2b−ζ′(X) have product uζ+ζ′ ∈ E2a+2b−(ζ⊕ζ′)(X).

We also have the following

(2) Let ζ be the trivial bundle of rank 1 on a space X. Then the Thom class uζ ∈ E2−ζ(X) ' E0(X)
coincides with the unit. This is a translation of our assumption that t ∈ Ẽ2(CP∞) restricts to the unit
in Ẽ2(S2) ' π0E.

Definition 7. For each integer n, we let MU(n) denote the Thom spectrum Σ−2nBU(n)ζn = Σ∞−2n
+ BU(n)/BU(n−

1), where ζn denotes the universal bundle of rank n. The restriction of ζn to BU(n − 1) is the sum of a
trivial bundle 1 of rank 1 with a bundle ζn−1. We therefore have a canonical map

MU(n− 1) ' Σ2−2nBU(n− 1)ζn−1 = Σ−2nBU(n− 1)ζn−1⊕1 → Σ−2nBU(n)ζn = MU(n).

The universal Thom class cn ∈ En(BU(n)/BU(n − 1)) can be interpreted as a map of spectra φn :
MU(n)→ E. It follows from (1) and (2) that the restriction of this map to MU(n−1) is homotopic to φn−1.
In the next lecture, we will see that the maps {φn}n≥0 therefore determine a map from the colimit

S ' MU(0)→ MU(1)→ MU(2)→ . . .

into E.

Definition 8. The colimit lim−→MU(n) is denoted by MU; it is called the complex bordism spectum.

Remark 9. The complex bordism spectrum MU can be described as a Thom spectrum for the space
BU = lim−→BU(n). However, it is not a Thom spectrum for a vector bundle of any particular rank: rather, it
is the Thom spectrum for a virtual bundle of rank 0, whose restriction to each BU(n) is a formal difference
ζn − 1n.
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Remark 10. The complex bordism spectrum has a natural geometric interpretation. Namely, each homo-
topy group πnE can be identified with the group of bordism classes of n-dimensional manifolds M equipped
with a stable almost complex structure (that is, a complex structure on the direct sum of the tangent bundle
M with a trivial vector bundle of sufficiently large rank). More generally, if X is any space, we can identify
the homology groups EnX with bordism groups of stably almost complex n-manifolds equipped with a map
to X.
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MU and Complex Orientations (Lecture 6)

February 4, 2010

In the last lecture, we defined spectra MU(n) = Σ∞−2nBU(n)/BU(n− 1) which form a direct system

MU(0)→ MU(1)→ MU(2)→ · · ·

The (homotopy) colimit of this sequence is called the complex bordism spectrum and is denoted by MU.

Example 1. The spectrum MU(0) is equivalent to the sphere spectrum.

Example 2. The spectrum MU(1) is the desuspension Σ∞−2 CP∞ of CP∞ = BU(1).

Remark 3. In terms of the above identifications, the inclusion MU(0)→ MU(1) is given by

MU(0) ' S ' Σ∞−2S2 → Σ∞−2 CP∞ = MU(1).

Remark 4. The direct sum of complex vector bundles is classified by a multiplication ma,b : BU(a) ×
BU(b)→ BU(a+ b). Passing to Thom spectra, we get a multiplication MU(a)⊗MU(b)→ MU(a+ b). We
note that the inclusion MU(n)→ MU(n+ 1) can be identified with the map

MU(n) ' S ⊗MU(n) = MU(0)⊗MU(n)→ MU(1)⊗MU(n)→ MU(n+ 1).

Remark 5. Taking the limit in a and b, we get a multiplication MU⊗MU → MU. That is, MU has the
structure of a ring spectrum. In fact, this multiplication is commutative and associative up to homotopy. It
has a unit, given by the map S ' MU(0)→ MU.

In fact, the situation is much better: the multiplication on MU is commutative and associative up to all
higher homotopies. That is, MU has the structure of an E∞-ring spectrum.

Let E be a complex-oriented cohomology theory. In the last lecture, we saw that every complex vector
bundle is E-orientable. In fact, for each integer n we can write down a canonical orientation of the universal
bundle ζn of rank n on the classifying space BU(n): it is classified by a map φn : MU(n)→ E. These maps
φn are uniquely characterized by the following requirements:

(1) The map φ1 : MU(1)→ E is given by the complex orientation of E (note that we can identify the set
of homotopy classes of maps [MU(1), E] with Ẽ2(CP∞).

(2) The maps φn are multiplicative in the following sense: for every pair of integers m and n, the diagram

MU(m)⊗MU(n)

φm⊗φn

��

// MU(m+ n)

φm+n

��
E ⊗ E // E

commutes up to homotopy.
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To prove assertion (2), we recall that E∗(MU(m + n)) can be identified (up to a shift in grading)
with the ideal in E∗(BU(m + n)) ' (π∗E)[[c1, . . . , cm+n]] generated by the Chern class cm+n. Similarly,
E∗(MU(m)⊗MU(n)) can be identified with the ideal in E∗(BU(m)×BU(n)) ' (π∗E)[[c1, . . . , cm, c′1, . . . , c

′
n]]

generated by the product cmc′n. The commutativity of the diagram now follows from the equation cm+n(ζ⊕
ζ ′) = cm(ζ)cn(ζ ′), where ζ and ζ ′ are vector bundles of rank m and n.

We claim that the composite map

MU(n)→ MU(n+ 1)
φn+1→ E

coincides with φn. Using (2) and Remark 4, we deduce that this composite map is given by

MU(n) ' MU(n)⊗MU(0)→ MU(n)⊗MU(1)
φnφ1→ E.

We are therefore reduced to proving that φ1|MU(0) coincides with φ0 (which is the unit map S → E).
According to Remark 3, this map is given by the class in π0E given by restricting our complex orientation
t ∈ Ẽ2(CP∞) to Ẽ2(S2) ' π0E, which we have assumed to be the unit in E.

The mapping spectrum EMU can be obtained as a homotopy limit of mapping spectra EMU(n). We
therefore have a Milnor long exact sequence

lim←−
1{E−1(MU(n))} → E0(MU)→ lim←−E

0(MU(n))→ lim←−
1{E0(MU(n))}.

The outer groups vanish, since each of the restriction maps E∗(MU(n + 1)) → E∗(MU(n)) is surjective (it
corresponds, under our choice of Thom isomorphisms, to the restriction map E∗(BU(n+ 1))→ E∗(BU(n)),
which is obtained by killing cn+1 in the power series ring E∗(BU(n+ 1)) ' (π∗E)[[c1, . . . , cn+1]]). It follows
that the maps φn : MU(n)→ E can be uniquely amalgamated to give a map φ : MU→ E.

Proposition 6. The map φ is a map of ring spectra.

Proof. We must show that the diagram

MU⊗MU
φ⊗φ //

��

MU

φ

��
E ⊗ E // E

commutes. Repeating the above argument, we conclude that E0(MU⊗MU) can be obtained as the inverse
limit of the cohomology groups E0(MU(a)⊗MU(b)). The desired result now follows from the commutativity
of each of the squares

MU(a)⊗MU(b) //

��

MU(a+ b)

��
E ⊗ E // E

(see Remark 4).

The inclusion Σ∞−2 CP∞ ' MU(1) → MU determines a class t ∈ M̃U
2
(CP∞). By construction, the

ring spectrum map φ : MU→ E carries t to our chosen complex orientation of E.

Remark 7. The class t ∈ M̃U
2
(CP∞) is a complex orientation of MU. To see this, we note that the

restriction of t to M̃U
2
(S2) ' π0 MU is given by the map S ' MU(0) → MU(1) → MU, which is the unit

for the ring spectrum MU.

We can summarize our discussion as follows:
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Theorem 8. Let E be a commutative ring spectrum, and let t ∈ M̃U
2
(CP∞) be the complex orientation

described above. The construction (φ : MU→ E) 7→ φ(t) determines a bijection between complex orientations
of E and ring spectrum maps MU→ E.

In other words, the complex bordism spectrum MU is the universal complex-oriented cohomology theory.

Proof. The above analysis shows that given any complex orientation of E, we can construct a ring spectrum
map φ : MU→ E which carries our complex orientation to the specified complex orientation of E. It remains
to prove injectivity. Let φ, φ′ : MU → E be two ring spectrum maps which determine the same complex
orientation of E; we wish to prove that φ and φ′ are homotopic. The condition that φ and φ′ determine the
same complex orientation tells us that φ|MU(1) ' φ′|MU(1). Since E is complex-orientable, the preceding
argument shows that E0(MU) ' lim←−E

0(MU(n)). It will therefore suffice to show that φ and φ′ have the
same restriction to MU(n) for every integer n. Since φ is a ring map, the composition

MU(1)⊗n → MU(n)
φ→ E

is a product of n copies of φ|MU(1) in E0(MU(1)), and therefore coincides with the composition

MU(1)⊗n → MU(n)
φ′

→ E.

It will therefore suffice to show that the restriction maps E0(MU(n)) → E0(MU(1)⊗n). Using our Thom
isomorphisms (provided by any complex orientation of E), this is equivalent to the injectivity of the map
E0(BU(n))→ E0(BU(1)n), which is the “spliting principle” we discussed earlier.

Theorem 8 suggests that if we are interested in complex-oriented cohomology theories and the associated
formal group laws, then we should focus our attention on the complex bordism spectrum MU. The universal
complex orientation determines a (graded) formal group law f(x, y) ∈ (π∗MU)[[x, y]]. As we have seen, this
formal group law is given by a map of graded rings L→ π∗MU.

Our goal next week will be to prove the following theorem:

Theorem 9 (Quillen). The map L → π∗MU is an isomorphism. (In particular, the spectrum MU has
homotopy groups only in even degrees.)
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The Homology of MU (Lecture 7)

February 9, 2010

Last week, we defined the complex bordism spectrum MU and showed that it was a universal complex
oriented cohomology theory. In particular, there is a formal group law f(x, y) over the ring π∗MU. This
formal group law is classified by a map L → π∗MU, where L is the Lazard ring. Our goal this week is to
prove the following fundamental result:

Theorem 1 (Quillen). The map L → π∗MU is an isomorphism. (In particular, the spectrum MU has
homotopy groups only in even degrees.)

The obstacle to overcome in the proof of Theorem 1 is that homotopy groups are typically difficult
to compute. In this lecture, we will consider the much easier problem of computing the homology groups
H∗(MU; Z). In fact, we will do something a little more general: namely, we compute the homology E∗(MU),
where E is an arbitrary complex oriented cohomology theory.

Since MU is the (homotopy) colimit of the sequence MU(n), we have E∗(MU) ' lim−→E∗(MU(n)). Since
every complex vector bundle has a canonical E-orientation, we obtain a canonical isomorphism of E∗(MU(n))
with E∗(BU(n)). Recall that E∗(BU(n)) can be identified with the symmetric power SymnE∗(BU(1)) =
Symn(π∗E{β0, β1, . . .}), where {βi} is the dual basis to topological basis {ti} for E∗(BU(1)) ' (π∗E)[[t]].
Correspondingly, we we identify E∗(MU(n)) with the symmetric power SymnE∗(MU(1)) ' Symn(π∗E{b0, b1, b2, . . .}),
where the {bi} are a dual basis to the basis {ti+1} for the cohomology

E∗(MU(1)) ' Ẽ∗(CP∞) ' t(π∗E)[[t]] ⊆ (π∗E)[[t]] ' E∗(CP∞).

To pass to the bordism spectrum MU, we need to understand the transition maps E∗(MU(n)) →
E∗(MU(n+ 1)). These maps are induced by the composition

MU(n) ' S ⊗MU(n) ' MU(0)⊗MU(n)→ MU(1)⊗MU(n)→ MU(n+ 1).

In the case n = 0, the inclusion MU(0) → MU(1) induces a map π∗E = E∗(MU(0)) → E∗(MU(1)), which
simply corresponds to the element b0 in our chosen basis for E∗(MU(1)). We conclude:

• For each n ≥ 0, the map on homology Symn(π∗E){b0, b1, . . .} ' E∗(MU(n)) → E∗(MU(n + 1)) '
Symn+1(π∗E){b0, b1, . . .} is given by multiplication by the class b0.

There is a map of polynomial algebras (π∗E)[b0, b1, b2, . . .]→ (π∗E)[b1, b2, . . .] which carries b0 to 1. This
map induces an isomorphism from Symn(π∗E{b0, b1, . . .}) to Sym≤n(π∗E{b1, b2, . . .}). Under these isomor-
phisms, the map E∗(MU(n))→ E∗(MU(n+1)) simply corresponds to the inclusion Sym≤n(π∗E{b1, b2, . . .}) ↪→
Sym≤n+1(π∗E{b1, b2, . . .}). Passing to the limit as n grows, we obtain the following:

Proposition 2. Let E be a complex oriented cohomology theory, and let {bi} ⊆ E∗(MU(1)) be dual to the
topological basis {ti+1} for E∗(MU(1)) ' t(π∗E)[[t]]. Then the images of the bi in E∗(MU) determine a ring
isomorphism (π∗E)[b1, b2, . . .] ' E∗(MU) (note that the image of b0 is the identity of E∗(MU) ).

Corollary 3. There is a canonical isomorphism H∗(MU; Z) ' Z[b1, b2, . . .].
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To use this observation in the proof of Theorem 1, we need to understand the composition L→ π∗MU→
H∗(MU; Z) ' Z[b1, b2, . . .] (here the second map is the Hurewicz homomorphism). This map classifies a
formal group law over the commutative ring Z[b1, b2, . . .]. We will see in a moment that this is the same
formal group law that we studied in Lecture 2.

It will be convenient to again consider a slightly more general problem. Let E be any complex ori-
ented cohomology theory. The smash product MU⊗E is another multiplicative cohomology theory, with
π∗(MU⊗E) = E∗(MU) ' (π∗E)[b1, b2, . . .]. This multiplicative cohomology theory has two complex orienta-
tions: one coming from our given complex orientation on E, and one from the universal complex orientation

on MU. In other words, we can find two classes tE , tMU ∈ M̃U⊗E
2
(CP∞), which determine isomorphisms

(π∗E)[b1, b2, . . .][[tE ]] ' (MU⊗E)∗(CP∞) ' (π∗E)[b1, b2, . . .][[tMU]].

In particular, we can write tMU as a power series∑
i≥1

ait
i+1
E

for some coefficients ai ∈ (π∗E)[b1, b2, . . .].

Claim 4. We have ai = bi: that is, we can write tMU = tE + b1t
2
E + b2t

3
E + . . . .

To prove the claim, note that we can think of a class in M̃U⊗E
2
(CP∞) as a map of spectra MU(1) →

MU⊗E. By general nonsense, this is the same thing as a map of E-module spectra from MU(1) ⊗ E to
MU⊗E. Consequently, tE and tMU correspond to a pair of maps φMU, φE : MU(1)⊗ E → MU⊗E.

For every integer i, the class bi ∈ E2i(MU(1)) determines a map of E-modules Σ2iE → MU(1) ⊗ E.
Taking the coproduct, we obtain an equivalence of E-module spectra

⊕i≥0Σ2iE ' MU(1)⊗ E.

Consequently, to describe a map of spectra from MU(1)⊗E to MU⊗E, we just need to specify its restriction
to Σ2iE for every integer i.

The map φE is given by the composition

E ⊗MU(1) λ→ E
u→ E ⊗MU,

where λ classifies the complex orientation of E and u is the unit map E → E ⊗MU. Since the {bi} are
chosen to be the dual basis to {ti+1}, we see that λ vanishes on Σ2iE for i > 0, and restricts to the identity
map Σ2iE ' E when i = 0.

The map φMU is given by smashing with E the canonical map MU(1)→ MU. In particular, φMU can be
identified with the coproduct of the family of maps φiMU : Σ2iE → MU⊗E classified by bi ∈ E2i(MU).

Note that the tensor product MU(1) ⊗ E is acted on by the function spectrum ECP∞ : at the level of
homology, this is given by the action of the cohomology ring E∗(CP∞) on the reduced homology Ẽ∗(CP∞)
(via the cap product). In particular, our complex orientation t induces a map Σ−2(MU(1)⊗E)→ MU(1)⊗E,
which we will denote by T . In terms of our identification MU(1)⊗E ' ⊕i≥0Σ2iE, the map T carries Σ−2Σ2iE
to Σ2(i−1)E by the identity map for i > 0, and is zero otherwise.

It follows that φMU can be written as a formal sum
∑
i φ

i
MU, where φiMU is given by the composition

MU(1)⊗ E T i

→ MU(1)⊗ E λ→ E
bi→ MU⊗E.

In other words, we have the formula
φMU =

∑
i

biφE ◦ T i.
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Identifying φMU and φE with classes in (MU⊗E)0(MU(1)) ' tE(π∗)[b1, . . .][[tE ]], we see that T i is given by
multiplication by tE . It follows that we have

tMU =
∑
i

tiE(bitE) =
∑
i

bit
i+1
E .

This completes the proof of Claim 4.
Let R be the graded-commutative ring π∗(MU⊗E) ' E∗(MU) ' (π∗E)[b1, b2, . . .]. The complex ori-

entations tE and tMU give rise to a pair of formal group laws fE , fMU ∈ R[x, y]. These formal group
laws can be characterized as follows: if π1, π2 : CP∞×CP∞ → CP∞ are the two projection maps and
m : CP∞×CP∞ → CP∞ denotes the multiplication, then we have

m∗tE = fE(π∗1tE , π
∗
2tE) m∗tMU = fMU(π∗1tMU, π

∗
2tMU)

in the cohomology ring (MU⊗E)∗(CP∞). This immediately gives the following result:

Proposition 5. Let E be a complex oriented cohomology theory and let R, fE , fMU ∈ R[[x, y]] be defined as
above. Let g(x) ∈ R[[x]] denote the power series g(x) = x+ b1x

2 + b2x
3 + · · · , so we have the formal identity

tMU = g(tE). Then fMU is given by the formula

fMU(x, y) = g ◦ fE(g−1(x), g−1y).

Specializing to the case where E is an Eilenberg-MacLane spectrum HZ, we deduce:

Corollary 6. Let E = MU⊗HZ, equipped with the complex orientation coming from MU. Then π∗E '
H∗(MU; Z) ' Z[b1, b2, . . .], and the formal group law over Z[b1, b2, . . .] is given by the formula f(x, y) =
g(g−1(x) + g−1(y)), where g(x) = x+ b1x

2 + b2x
3 + . . . .

It follows that the composition L → π∗MU → H∗(MU; Z) is the homomorphism studied in Lecture 2.
We conclude:

Corollary 7. The composite map L→ π∗MU→ H∗(MU; Z) is an isomorphism after tensoring with Q.

Since the Hurewicz map π∗MU→ H∗(MU; Z) is always a rational isomorphism, we deduce the following
baby version of Theorem 1:

Corollary 8. The map L→ π∗MU induces an isomorphism after tensoring with Q.

Since MU is a connective spectrum whose homology groups Hn(MU; Z) are finitely generated, we conclude
that the homotopy groups πn MU are finitely generated abelian groups. Consequently, to prove Theorem
1 holds integrally, it will suffice to show that the map L → π∗MU becomes an isomorphism after p-adic
completion, for every prime number p. We will prove this later in the week, using the Adams spectral
sequence.
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The Adams Spectral Sequence (Lecture 8)

April 27, 2010

Recall that our goal this week is to prove the following result:

Theorem 1 (Quillen). The universal complex orientation of the complex bordism spectrum MU determines
a formal group law over π∗MU. This formal group law is classified by an isomorphism of commutative rings
L→ π∗MU.

To prove this theorem, we need a method for calculating the homotopy groups π∗MU. In the last lecture,
we computed the homology groups H∗(MU; Z) ' Z[b1, b2, . . .]. The universal coefficient theorem then gives
H∗(MU;R) ' R[b1, b2, . . .] for any commutative ring R. In this lecture, we review a general method for
passing from information about the homology of a spectrum to information about its homotopy groups: the
Adams spectral sequence.

Fix a prime number p, and let R denote the Eilenberg-MacLane spectrum HFp. Then E admits a
coherently associative multiplication. In particular, we can define a functor R

•
from finite linearly ordered

sets to spectra, given by {0, 1, . . . , n} 7→ R ⊗ · · · ⊗ R ' R⊗n+1. In other words, we can view R
•

as an
augmented cosimplicial spectrum. Restricting to nonempty finite linearly ordered sets, we get a cosimplicial
spectrum which we will denote by R•. If X is any other spectrum, we can define an augmented cosimplicial
spectrum X

•
= X ⊗ R•; let X• denote the underlying cosimplicial spectrum. The augmented cosimplicial

spectrum X
•

determines a map

X ' X ⊗ S ' X ⊗R−1
= X

−1 → TotX•.

Put more concretely, we have the canonical Adams resolution of X, which is a chain complex of spectra

X → X ⊗R d0−d1

→ X ⊗R⊗R d0−d1+d2

→ X ⊗R⊗R⊗R→ · · ·

Any cosimplicial spectrum X• determines a spectral sequence {Ea,b
r }. Here Ea,b

1 = πaX
b, and the

differential on the first page is the differential in the chain complex

πaX
0 d0−d1

→ πaX
1 d0−d1+d2

→ πaX
2 → · · ·

In good cases, this spectral sequence will converge to information about the totalization TotX•. In our case,
we have the following result:

Theorem 2 (Adams). Let X be a connective spectrum whose homotopy groups πnX are finitely generated
for every integer n. Fix a prime number p and let R = HFp, and let X → TotX• be the map constructed
above. Then:

(1) For every integer n, we have a canonical decreasing filtration

· · · ⊆ F 2πnX → F 1πnX → F 0πnX = πnX

where F iπnX is the kernel of the map πnX → πn Toti−1X•.
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(2) The decreasing filtration F iπnX is commensurate with the p-adic filtration. That is, for each i ≥ 0,
there exists j � i such that piπnX ⊆ F jπnX ⊆ pjπnX. In particular, we have a canonical isomorphism

lim←−(πnX/F
jπnX) ' lim←−(πnX/p

iπnX) ' (πnX)∨,

where ∨ denotes the functor of p-adic completion.

(3) For fixed a and b, the abelian groups {Ea,b
r }r≥0 stabilize to some fixed value Ea,b

∞ for r � 0. Moreover,
we have a canonical isomorphism

F bπa−b(X)/F b+1πa−bX ' Ea,b
∞ .

If X is a ring spectrum, then X• has the structure of a cosimplicial ring spectrum. In this case, we have
the following additional conclusions:

(4) For integers m and n, the multiplication map πmX × πnX → πn+mX carries F iπmX × F jπnX into
F i+jπm+nX. In particular, we get a bilinear multiplication Ea,b

∞ × Ea′,b′

∞ → Ea+a′,b+b′

∞ .

(5) The spectral sequence {Ea,b
r } is multiplicative. That is, for each r, we have bilinear maps Ea,b

r ×Ea′,b′

r →
Ea+a′,b+b′

r . These maps are associative in the obvious sense and compatible with the differential (i.e.,
the differential satisfies the Leibniz rule). Moreover, when r � 0 so that Ea,b

r = Ea,b
∞ and Ea′,b′

r =
Ea′,b′

∞ , these multiplications agree with the multiplications defined in (4).

To apply Theorem 2 in practice, we would like to understand the initial pages of the spectral sequence
{Ea,b

r }. When r = 1, we have Ea,b
r ' πa(X⊗R⊗b+1). In particular, E∗,01 ' π∗(X⊗R) = H∗(X; Fp) is the mod

p homology of the spectrum X. To understand the next term, we write X1 = X⊗R⊗R = (X⊗R)⊗R(R⊗R).
This gives a canonical isomorphism E∗,11 ' H∗(X; Fp)⊗Fp

π∗(R⊗R).

Definition 3. Let R be the ring spectrum HFp. The graded-commutative ring π∗(R⊗R) is called the dual
Steenrod algebra, and will be denoted by A∨.

More generally, we can write

Xb = X ⊗R⊗b+1 = (X ⊗R)⊗R (R⊗R)⊗R · · · ⊗R (R⊗R).

This identification gives a canonical isomorphism

E∗,b1 ' H∗(X; Fp)⊗Fp (A∨)⊗b

. We have a chain complex of graded abelian groups

H∗(X; Fp)→ H∗(X; Fp)⊗Fp
A∨ → H∗(X; Fp)⊗Fp

A∨⊗Fp
A∨ → · · ·

associated to a cosimplicial graded abelian group H∗(X; Fp)⊗ (A∨)⊗•.
To describe the second page of the spectral sequence {Ea,b

r }, we would like understand the differentials in
this chain complex. We begin by noting that A∨ is actually a Hopf algebra. That is, there is a comultiplication
c : A∨ → A∨⊗Fp A∨, which is induced by the map of ring spectra

R⊗R ' R⊗ S ⊗R→ R⊗R⊗R ' (R⊗R)⊗R (R⊗R)

by passing to homotopy groups. Moreover, this coalgebra acts on H∗(X; Fp) for any spectrum X: that is,
we have a canonical map a : H∗(X; Fp)→ H∗(X; Fp)⊗Fp

A∨. This map is induced by the map of spectra

X ⊗R ' X ⊗ S ⊗R→ X ⊗R⊗R ' (X ⊗R)⊗R (R⊗R).

Remark 4. Passing to (graded) vector space duals, we see that the dual of A∨ is an algebra (called the
Steenrod algebra, which acts on the cohomology H∗(X; Fp) of any spectrum.
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Unwinding the definitions, we see that each of the differentials

H∗(X; Fp)⊗Fp
(A∨)⊗n−1 → H∗(X; Fp)⊗Fp

(A∨)⊗n

is given by an alternating sum
∑

0≤i≤n d
i, where:

• The map d0 is induced by the action map a : H∗(X; Fp)→ H∗(X; Fp)⊗Fp A∨.

• The maps d1, . . . , dn−1 are induced by the comultiplication c : A∨ → A∨⊗Fp
A∨, applied to each factor

of A∨.

• The map dn is given by the inclusion of the unit Fp → A∨.

It is convenient to describe the above analysis in the language of algebraic geometry. For simplicity, we
will henceforth assume that p = 2, so that graded-commutative rings are actually commutative.

Proposition 5. (1) Let G denote the spectrum of the commutative ring A∨. The comultiplication A∨ →
A∨⊗F2 A∨ determines a multiplication G ×SpecF2 G → G, which endows G with the structure of an
affine group scheme over Spec F2.

(2) For any spectrum X, the action map H∗(X; F2) → H∗(X; F2) ⊗F2 A∨ endows the vector space V =
H∗(X; F2) with the structure of a representation of the group scheme G.

(3) The E1-term of the Adams spectral sequence can be identified with the canonical cochain complex

V → Γ(G;V ⊗ OG)→ Γ(G2;V ⊗ OG2)→ · · ·

which encodes the action of G on V .

(4) The E2-term of the Adams spectral sequence can be identified with the cohomologies of this cochain
complex. In other words, we have

E∗,b2 ' Hb(G; H∗(X; F2)).

In the special case where X is a ring spectrum, we can say more. In this case, the multiplication on
X endows the homology H∗(X; F2) with the structure of a commutative F2-algebra. Then the spectrum
Spec H∗(X; F2) is an affine scheme Y . The action H∗(X; F2)→ H∗(X; F2)⊗F2 A∨ is a map of commutative
rings, which determines a map of affine schemes G ×SpecF2 Y → Y . In other words, the affine scheme
Y is acted on by the group scheme G. Moreover, the cohomology groups Hb(G; H∗(X; F2)) are simply the
cohomology groups of the quotient stack Y/G. In particular, we get an isomorphism of commutative algebras
E∗,∗2 ' H∗(Y/G; OY/G).

To apply this information in practice, we need to understand the algebraic group G. For each integer
n, let X(n) denote the function spectrum SRP n

, where RPn denotes real projective space of dimension
n. Then X(n) is a commutative ring spectrum (in fact, an E∞-ring spectrum), and we have a canonical
isomorphism

H∗(X(n); F2) ' H∗(RPn; F2) ' F2[x]/(xn+1).

In particular, we get an action of G on the affine scheme Spec F2[x]/(xn+1). Passing to the limit as n grows,
we get an action of G on the formal scheme

lim−→ Spec F2[x]/(xn+1) ' Spf F2[[x]] = Spf H∗(RP∞,F2)

This action is not arbitrary. Note that RP∞ has a commutative multiplication. For example, we can
realize RP∞ as the projectivization of the real vector space R[t], and RPn as the projectivization of the
subspace of R[t] spanned by polynomials of degree ≤ n. The multiplication on R[t] induces a multiplication
RP∞ ×RP∞ → RP∞, which is the direct limit of multiplication maps RPm ×RPn → RPm+n. Each of
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these multiplication maps induces a map of spectra X(m+n)→ X(m)⊗X(n), which induces a G-equivariant
map

Spec(F2[x]/(xm+1))×SpecF2 Spec(F2[x]/(xn+1))→ Spec(F2[x]/xm+n+1).

In concrete terms, this is just given by the map of commutative rings F2[x]/(xm+n+1)→ F2[x, x′]/(xm+1, x′
n+1)

given by x 7→ x+ x′. Passing to the limit as m and n grow, we get a map of formal schemes

Spf F2[[x]]×SpecF2 Spf F2[[x]]→ Spf F2[[x]].

This map encodes a formal group law over the ring F2, which is given by the power series f(x, y) = x+ y ∈
F2[[x, y]].

By construction, the action of G on Spf F2[[x]] preserves the group structure given by f(x, y) = x + y.
That is, we can regard G as acting by automorphisms of the formal group law f . This gives a description of
G which is very convenient for our purposes:

Theorem 6. For every commutative F2-algebra A, the above construction yields a canonical bijection of
Hom(A∨, A) ' Hom(SpecA,G) with the group of all power series

x 7→ x+ a1x
2 + a2x

4 + a3x
8 + . . . ,

where ai ∈ A, regarded as automorphisms of the formal group SpecA×Spec F2 Spf F2[[x]] = Spf A[[x]].
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The Adams Spectral Sequence for MU (Lecture 9)

February 18, 2010

In this lecture, we will apply the Adams spectral sequence to obtain information about the homotopy
ring π∗MU. Let us begin by recalling the major conclusions of the last lecture:

(1) Let X be a commutative ring spectrum. Then H∗(X; F2) is a commutative F2-algebra; we may
therefore regard Spec H∗(X; F2) as a scheme Z over Spec F2.

(2) The scheme Spec H∗(X; F2) is acted on by the group scheme G = Spec A∨ of automorphisms of the
formal additive group which are equal to the identity to first order. In other words, G is the group
scheme characterized by the formula

HomF2(SpecR,G) = {f(x) ∈ R[[x]] : f(x) = x+ a1x
2 + a2x

4 + a3x
8 + · · · }.

(3) The cohomology groups Hb(Z/G,OZ/G) = Hb(G; H∗(X; F2)) can be identified with E∗b2 , the second
page of the Adams spectral sequence for computing the homotopy groups π∗X.

We would like to apply this in the situation where X is the complex bordism spectrum MU. In this
case, we already have a good understanding of the homology H∗(MU; F2): it can simply be identified with a
polynomial ring F2[b1, b2, . . .] on infinitely many generators. Consequently, the scheme Z = Spec H∗(MU; F2)
can be described as an infinite dimensional affine space over F2. However, our study of formal group
laws gives a more conceptual description of Z: namely, if R is any F2-algebra, then Hom(SpecR,Z) =
Hom(F2[b1, . . .], R) = R∞ can be identified with the set of formal expressions of the form y+b1y2 +b2y3 + . . .
in the power series ring R[[y]]. In other words, we can identify Hom(SpecR,Z) with the set of coordinates
on the formal additive group over R, which agree with the standard coordinate y to first order.

Since G is the automorphism group of the formal additive group which preserves the standard coordinate
to first order, there is an obvious action of G on the scheme Z. However, this is not the action described in (2)
above. The natural action of G on the formal additive group comes from studying the action of the Steenrod
algebra on the cohomology ring H∗(RP∞; F2) ' F2[[x]]. On the other hand, we can relate Z to the space
of coordinates on the formal additive group by considering the cohomology ring H∗(CP∞; F2) ' F2[[y]].
The power series rings F2[[x]] and F2[[y]] are abstractly isomorphic (even better, by an isomorphism which
respects the formal group structures). However, this isomorphism isn’t relevant to our picture: for example,
it does not respect gradings (the coordinate x has cohomological degree 1, while the coordinate y has
cohomological degree 2). Instead, they are related by the existence of a complexification RP∞ → CP∞.
This induces a map on cohomology rings H∗(CP∞; F2) → H∗(RP∞,F2), which is given concretely by
the formula y 7→ x2. Consequently, if f(x) = x + a1x

2 + a2x
4 + . . . is an R-point of G, then f acts on

H∗(CP∞; F2) ' F2[[y]] by the formula

f ′(y) = f(x)2 = x2 + a2
1x

4 + a2
2x

8 + . . . = y + a2
1y

2 + a2
2y

3 + · · ·

To clarify the situation, it is convenient to introduce a bit of notation. The Frobenius map F : G → G
determines an exact sequence of group schemes

0→ ker(F )→ G F→ G′ → 0.
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Here G′ denotes the group scheme G, but regarded as the quotient G/ ker(F ). In other words, we should
think of G as acting on the power series ring H∗(RP∞; F2) ' F2[[x]], and G′ as acting on the subring
H∗(CP∞; F2) ' F2[[y]] ' F2[[x2]]. The action of G on the scheme Z factors through the Frobenius map F :
in other words, it is trivial on the normal subgroup ker(F ) ⊆ G.

To understand the Adams spectral sequence, we need to study the quotient stack Z/G. We first consider
the quotient Z/G′.

Proposition 1. Let Z0 = Spec F2[b2, b4, b5, b6, b8, . . .] be the closed subscheme of Z whose R-points consist
of those formal coordinates f(y) = y+ b1y

2 + b2y
3 + · · · ∈ R[[x]] for which the coefficients b2i−1 of y2i

vanish
for i > 0. Then the action of G on Z determines an isomorphism of schemes

a : G′ × Z0 → Z.

In particular, G′ acts freely on Z, and the composition

Z0 → Z → Z/G′

is an isomorphism of schemes.

Proof. We must show that for every F2-algebra R, the map a induces a bijection on R-points. In other
words, we must show that if h(y) = y + c1y

2 + c2y
3 + c3y

4 + · · · is an arbitrary R-point of Z, then h can
be written uniquely as a composition h(y) = (f ◦ g)(y), where g has the form g(y) = y + a1y

2 + a2y
4 + · · ·

and f has the form f(y) = y+ b2y
3 + b4y

5 + b5y
6 + b6y

7 + b8y
9 + · · · . In fact, we claim that the coefficients

{ai, bi}i<n are uniquely determined by the requirement that the equation h(y) = (f ◦ g)(y) holds modulo
yn+1. Assuming this, we note that an or bn (whichever is defined) is uniquely determined by examining the
yn+1-coefficients of h(y) and (f ◦ g)(y).

The quotient Z/G can be identified with the quotient (Z/ ker(F ))/G′. Since ker(F ) acts trivially on Z,
we can identify Z/ ker(F ) with the product Z ×B ker(F ). The action of G′ determines a composite map

β : G′ × Z0 ×B ker(F ) ↪→ G′ × (Z ×B ker(F )) ' G′ × (Z/ ker(F ))→ Z/ ker(F ).

This is pullback of the map appearing in Proposition 1, and therefore also an isomorphism. We therefore
obtain an isomorphism of stacks

Z/G ' (Z/ ker(F ))/G′ ' (G′ × Z0 ×B ker(F ))/G′ ' Z0 ×B ker(F ).

In other words, we can identify the cohomology Hb(Z/G; OZ/G) with the tensor product F2[b2, b4, b5, . . .]⊗F2

Hb(ker(F ); F2). It therefore remains only to compute the cohomology of ker(F ).
Unwinding the definitions, we can describe the group scheme ker(F ) as follows: an R-point of ker(F ) is

a power series of the form
g(x) = x+ a1x

2 + a2x
4 + · · ·

where a2
i = 0 for each i. It is very easy to compose such power series: if g′(x) is given by x+a′1x

2+a′2x
4+· · · ,

then the composition (g′ ◦g)(x) is given by x+(a1 +a′1)x2 +(a2 +a′2)x4 + . . . In other words, we can identify
ker(F ) with a product of infinitely many copies of the group scheme α2 = Spec F2[a]/(a2), whose R-points
are given by elements a ∈ R such that a2 = 0 (regarded as a group with respect to addition). We are
therefore reduced to computing the cohomology of the group scheme α2.

To understand this cohomology, we need to understand what it means for a vector space V to have
an action of the group α2. By definition, this is just a map V → V ⊗F2 F2[a]/(a2) compatible with the
comultiplication a 7→ a⊗1+1⊗a on F2[a]/(a2). Note that this category depends only on the comultiplication
on F2[a]/(a2), not on its multiplication. There is an isomorphism of coalgebras

θ : F2[a]/(a2) ' FZ/2Z
2 ,
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carrying 1 to (1, 1) and a to (0, 1). It follows that the category of representations of α2 is equivalent to the
category of representations of the group Z/2Z (note that θ is not an isomorphism of algebras: this means
that our equivalence of categories does not respect tensor products). Under this equivalence of categories, the
trivial representation V of α2 goes to a 1-dimensional representation of Z/2Z, which must itself be trivial.
It follows that we have canonical isomorphisms

H∗(α2; F2) = Ext∗(V, V ) = H∗(Z/2Z; F2) = H∗(RP∞; F2)

is a polynomial algebra F2[ε], where ε has cohomological degree 1.
It follows that H∗(ker(F ); F2) can be identified with a polynomial ring F2[ε1, ε2, . . .], where each εi has

cohomological degree 1. However, there is another grading on this cohomology ring, coming from the grading
on the ring of functions F2[a1, a2, . . .]/(a2

1, a
2
2, . . .). This grading is determined by the requirement that the

expression x + a1x
2 + a2x

4 + . . . has total degree −1, where x has degree −1: in other words, each ai has
degree 2i − 1.

We can summarize our discussion as follows:

Proposition 2. The second page of the mod 2 Adams spectral sequence for MU is given by

E∗,∗2 ' F2[b2, b4, b5, b6, b8, . . . , ε1, ε2, . . .].

Here each bi has bidegree (2i, 0), while each εj has bidegree (2j − 1, 1).

Note that the total degree of each of the polynomial generators in Proposition 2 is even. It follows that a
group Ea,b

2 can be nonzero only when the total degree a− b is even. Consequently, there can be no nontrivial
differentials in the Adams spectral sequence in the second page or beyond.
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The Proof of Quillen’s Theorem (Lecture 10)

February 19, 2010

At the end of the last lecture, we arrived at the following conclusion for the prime p = 2:

Proposition 1. The second page of the mod p Adams spectral sequence for MU is given by

E∗,∗2 ' Fp[bi, εj ].

Here i ranges over nonnegative integers such that i+ 1 is not a power of p, and bi has bidegree (2i, 0), while
εj is defined for all j ≥ 0 and has bidegree (pj − 1, 1).

This calculation is valid for all p, not just the case p = 2. The proofs are essentially the same, but our
use of algebraic geometry needs to be replaced by “super” algebraic geometry.

We define ci =

{
εj if i+ 1 = pj

bi otherwise.
so that we have an isomorphism E∗,∗2 ' Fp[c0, c1, . . .]. Here each ci

has total degree 2i. In particular, every nonzero element of E∗,∗2 has even total degree, so the Adams spectral
sequence degenerates at the second page. We deduce the following:

Proposition 2. The (mod p) Adams filtration on π∗MU has the following property:

(∗) The associated graded ring gr(π∗MU) is isomorphic to a polynomial algebra Fp[c0, c1, . . .], with ci ∈
gr0(π2i MU) for i+ 1 6= pj, and ci ∈ gr1(π2i MU) for i+ 1 = pj.

Remark 3. In particular, the class c0 can be lifted to an element of F 1π0 MU, which is the kernel of the
Hurewicz map

π0 MU ' H0(MU; Z) ' Z→ Fp ' H0(MU; Fp).

This map is nonzero modulo elements of Adams filtration 2, which includes the subgroup p2π0 MU ' p2Z.
It follows that (after modifying by a suitable scalar) we may assume that c0 is represented by p ∈ pZ '
F 1π∗MU.

Let R denote the polynomial ring Z[u1, u2, . . .]. We regard R as a graded ring where each class ui has
degree 2i. We also regard R as filtered, where F iR is generated by monomials of the form pm1um2

1 um3
2 . . .

for which m1 +mp +mp2 + . . . ≥ i. Choose a map of commutative rings φ : R→ π∗MU with the following
properties:

(1) If i+ 1 is not a power of p, then φ(ui) is an element of π2i MU representing ci ∈ gr0(π2i MU).

(2) If i+ 1 = pv, then φ(ui) is an element of F 1π2i MU representing ci ∈ gr1 π2i MU.

Then φ is compatible with both the grading and the filtrations on R and π∗MU. It follows from Propo-
sition 2 that φ induces an isomorphism of associated graded rings grR→ gr(π∗MU). It follows by induction
on i that φ induces an isomorphism of quotients R/F iR→ (π∗MU)/F iπ∗MU. Passing to the inverse limit,
we get an isomorphism of graded rings

Zp[u1, u2, . . .] ' lim←−R/F
iR ' lim←−(π∗MU)/F iπ∗MU ' (π∗MU)∨.

Here ∨ denotes the functor of p-adic completion (applied in each graded degree).
We are now ready to prove Quillen’s theorem:
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Theorem 4 (Quillen). Let θ : L → π∗MU be the ring homomorphism classifying the formal group law
coming from the universal complex orientation on MU. Then θ is an isomorphism.

Proof. We have already seen that the composite map L
θ→ π∗MU→ H∗(MU; Z) ' Z[b1, . . .] is an injection.

We show that θ is surjective. Since each homotopy group of MU is finitely generated, it will suffice to show
that θ induces a surjection L∨ → (π∗MU)∨ after p-adically completing at every prime p.

Using Lazard’s theorem we can identify L∨ ' Zp[t1, t2, . . .], and the above analysis gives an isomorphism
of graded rings (π∗MU)∨ ' Zp[u1, u2, . . .]. Let I denote the ideal of L∨ generated by homogeneous elements
of positive degree and let K ⊆ (π∗MU)∨, J ⊆ Z2[b1, b2, . . .] be defined similarly. As in the proof of Lazard’s
theorem, it will suffice to show that the map I/I2 → K/K2 is surjective in each degree. In each degree, we
have identifications (I/I2)2n ' Zptn and (K/K2)2n ' Zpun, so that θ(tn) = λun + decomposables . We
wish to prove that λ is a p-adic unit. The Hurewicz map carries un to λ′bn + decomposables . In the proof
of Lazard’s theorem, we saw that

λλ′ =

{
p if n+ 1 = pv

1 otherwise.

If n + 1 is not a power of p, it follows immediately that λ is a p-adic unit. If n + 1 = pv, then we need to
work a little harder: namely, we need to show that λ′ is divisible by p. It will suffice to show that the image
of un vanishes in the ring H∗(MU; Fp) ' Fp[b1, b2, . . .]. This is equivalent to the requirement that un have
Adams filtration ≥ 1, which is true by construction.

Let us now return to the construction of the Adams spectral sequence. Let X be an arbitrary spectrum.
Since the complex bordism spectrum MU is coherently associative, we can define a cosimplicial spectrum
X• by the formula Xn = X ⊗MU⊗n+1. If X is connective, then one can show that the map X → TotX• '
lim←−TotnX• is an equivalence. We therefore obtain a spectral sequence {Ea,br , dr} which carries information
about the homotopy groups of X. This spectral sequence is called the Adams-Novikov spectral sequence.
It has slightly different behavior than the classical Adams spectral sequence: since π0 MU ' π0S ' Z, the
convergence is very fast. Namely, if we define Fnπ∗X to be the kernel of the map

π∗X → π∗Totn+1X•,

then we have for every integer n ≥ 0 a finite filtration

0 = Fn+1πnX ⊆ FnπnX · · · ⊆ F 1πnX ⊆ F 0πnX = πnX.

The E1-term of the Adams-Novikov spectral sequence is given by the chain complex of graded abelian groups

MU∗(X)→ (MU⊗MU)∗(X)→ (MU⊗MU⊗MU)∗X → · · ·

We would like to understand this chain complex in algebro-geometric terms.
For any complex-oriented cohomology theory E, we have a canonical isomorphism π∗(E ⊗ MU) '

(π∗E)[b1, b2, . . .]. Assuming that the homotopy groups of E are concentrated in even degrees (so that π∗E
is a commutative ring R), we conclude that Specπ∗(E ⊗MU) is an infinite dimensional affine space over
SpecR: more precisely, it is the affine space parametrizing all coordinates

g(t) = t+ b1t
2 + b2t

3 + · · ·

on the formal power series ring R[[t]] which agree with the standard coordinate to first order.
Let G = Spec Z[b1, b2, . . .] be the scheme whose R-points are power series g(t) = t+b1t2+b2t3+· · · ∈ R[[t]],

regarded as a group under composition. We conclude that π∗(E ⊗MU) is the ring of functions on the affine
scheme G × Specπ∗E. In particular, Quillen’s theorem gives Specπ∗(MU⊗MU) ' G × SpecL. Here the
two natural inclusions MU → MU⊗MU ← MU induce a pair of maps G × SpecL → SpecL. In concrete
terms, this means that given a formal group f(x, y) ∈ R[[x, y]] and a power series g(t) = t + b1t

2 + . . .,
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we can naturally construct two formal groups over R: the first is given by f itself, and the second by the
formula gf(g−1(x), g−1(y)). In other words, the group G of coordinate changes acts on the moduli space
SpecL parametrizing formal groups.

More generally, the same reasoning shows that π∗MU⊗n+1 can be identified with the ring of functions on
the product scheme Gn × SpecL. In particular, the cosimplicial spectrum MU⊗•+1 gives rise to a simplicial
scheme Specπ∗(MU⊗•+1), which encodes the canonical action of G on SpecL.

Definition 5. We let Ms
FG denote the quotient stack SpecL/G. We will refer to Ms

FG as the moduli stack
of formal groups and strict isomorphisms.

More precisely, Ms
FG is a functor which assigns to each commutative ring R the category whose objects

are formal groups f ∈ R[[x, y]], where a morphism from f to f ′ is a power series g(t) = t+b1t2 + . . . such that
f(g(x), g(y)) = gf ′(x, y). Here the word “strict” refers to the requirement that g(t) have leading coefficient
t. (One can show that Ms

FG is in fact a stack: that is, the groupoids defined above satisfy descent with
respect to the flat topology.)

Now suppose that X is an arbitrary spectrum. It is clear that π∗Xn = π∗(X⊗MU⊗n+1) is a module over
the commutative ring π∗MU⊗n+1, and can therefore be identified with a quasi-coherent sheaf on the affine
scheme SpecL×Gn. These quasi-coherent sheaves are compatible with one another under base change. In
the language of algebraic stacks, this means:

• Let X be any spectrum. Then π∗X can be regarded as a quasi-coherent sheaf FX on the quotient
stack Ms

FG.

Put more concretely, the abelian group MU∗(X) is a module over π∗MU ' L, and can therefore be
regarded as a quasi-coherent sheaf on SpecL. This quasi-coherent sheaf carries an action of the group
scheme G defined above, compatible with the action of G on SpecL.

The cochain complex

MU∗(X)→ (MU⊗MU)∗(X)→ (MU⊗MU⊗MU)∗X → · · ·

now admits a natural interpretation: it is simply the standard complex for computing the cohomology of
Ms

FG with coefficients in FX . In other words, we have the following:

Proposition 6. Let X be any spectrum. The second page of the Adams-Novikov spectral sequence is given
by

E∗b2 ' Hb(Ms
FG; FX) ' Hb(G; MU∗(X)).
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Formal Groups (Lecture 11)

April 27, 2010

We begin by recalling our discussion of the Adams-Novikov spectral sequence:

Claim 1. Let X be any spectrum. Then MU∗(X) is a module over the commutative ring L = π∗MU, and
can therefore be understood as a quasi-coherent sheaf on the affine scheme SpecL which parametrizes formal
group laws (here L denotes the Lazard ring). This quasi-coherent sheaf admits an action of the affine group
scheme G = Spec Z[b1, b2, . . .] which assigns to each commutative ring R the group {g ∈ R[[t]] : g(t) =
t+ b1t

2 + b2t
3 + · · · }, compatible with the action of G on SpecL by the construction

(g ∈ G(R), f(x, y) ∈ FGL(R) ⊆ R[[x, y]]) 7→ gf(g−1(x), g−1(y)) ∈ FGL(R) ⊆ R[[x, y]]

There is a spectral sequence {Ep,q
r , dr}, called the Adams-Novikov spectral sequence, with the following

properties. If X is connective, then {Ep,q
r , dr} converges to a finite filtration of πp−qX. Moreover, the groups

E∗,q2 are given by the cohomology groups Hq(G; MU∗X).
Equivalently, we can think of E∗,q2 as the cohomology of the stack Ms

FG = SpecL/G with coefficients in
the sheaf FX determined by MU∗(X) with its G-action.

To be more precise, we should observe that the ring L, and the ring Z[b1, . . . , ] are all equipped a canonical
grading. In geometric terms, this grading corresponds to an action of the multiplicative group Gm. This
group acts on L by the formula

(λ ∈ R×, f(x, y) ∈ FGL(R)) 7→ λf(λ−1x, λ−1y).

In fact, we can identify both Gm and G with subgroups of a larger group G+, with G+(R) = {g ∈ R[[x]] :
g(t) = b0t + b1t

2 + · · · , b0 ∈ R×}. This group can be identified with a semidirect product of the subgroup
Gm (consisting of those power series with bi = 0 for i > 0) and G (consisting of those power series with
b0 = 1), and this semidirect product acts on SpecL by substitution.

For any spectrum X, MU∗(X) is a graded L-module, and the action of G on MU∗(X) is compatible
with the grading. In the language of algebraic geometry, this means that MUeven(X) = ⊕n MU2n(X) can
be regarded as a representation of the group G+, compatible with the action of G+ on SpecL. In the
language of stacks, this means that MUeven(X) can be regarded as a quasi-coherent sheaf on the quotient
stack SpecL/G+.

Definition 2. The quotient stack SpecL/G+ is called the moduli stack of formal groups and will be denoted
by MFG.

To understand MFG, it will be useful to have a more conceptual way of thinking about formal group
laws. Let R be a commutative ring and let f(x, y) ∈ R[[x, y]] be a formal group law over R. We let AlgR

denote the category of commutative R-algebras. We can associate to f a functor Gf : AlgR → Ab from R to
the category of abelian groups: namely, we let Gf (A) = {a ∈ A : (∃n)an = 0} ⊆ A, with the group structure
given by (a, b) 7→ f(a, b). Note that this expression makes sense: though f has infinitely many terms, if a
and b are nilpotent then only finitely many terms are nonzero. We will call Gf the formal group associated
to f .
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Remark 3. The condition that f ∈ R[[x, y]] define a formal group law is equivalent to the requirement that
the above formula defines a group structure on Gf (A) for every R-algebra A.

Suppose that we are given two formal group laws f, f ′ ∈ R[[x, y]] and an isomorphism α : Gf ' Gf ′ of
the corresponding formal groups. In particular, for every R-algebra A, α determines a bijection αA from the
set {a ∈ A : a is nilpotent } with itself. To understand this bijection, let us treat the universal case where A
contains an element a such that an+1 = 0. This is the truncated polynomial ring A = R[t]/tn+1. In this case,
α carries t to another nilpotent element, necessarily of the form b0t+b1t2 + . . .+bn−1t

n. Since α is functorial,
it follows that for any commutative R-algebra A containing an element a with an = 0, we have αA(a) =
b0a+ b1a

2 + · · ·+ bn−1a
n. In particular, if A = R[t]/tn, we deduce that αA(t) = b0t+ b1t

2 + . . .+ bn−2t
n−1.

In other words, the coefficients bi which appear are independent of n. We conclude that there exists a power
series g(t) = b0t + b1t

2 + · · · such that αA(a) = g(a) for every commutative ring a. Since αA is a bijection
for any A, we conclude that g is an invertible power series. Since αA is a group homomorphism, we deduce
that g satisfies the formula f ′(g(x), g(y)) = gf(x, y): that is, the formal group laws f and f ′ differ by the
change-of-variable g.

Definition 4. Let R be a commutative ring. An coordinatizable formal group over R is a functor G : AlgR →
Ab which has the form Gf , for some formal group law f ∈ R[[x, y]].

We regard the coordinatizable formal group laws (and isomorphisms between them) as a subcategory of
the category Fun(AlgR,Ab) of functors from AlgR to abelian groups. We have just seen that this subcategory
admits a less invariant description: it is equivalent to a category whose objects are formal group laws
f ∈ R[[x, y]], and whose morphisms are maps g such that f ′(g(x), g(y)) = gf(x, y).

The coordinatizable formal group laws over R do not satisfy descent in R. Consequently, it is convenient
to make the following more general definition:

Definition 5. Let R be a commutative ring. A formal group law over R is a functor G : AlgR → Ab
satisfying the following conditions:

(1) The functor G is a sheaf with respect to the Zariski topology. In other words, if A is a commutative
R-algebra with a pair of elements x and y such that x + y = 1, then G(A) can be described as the
subgroup of G(A[ 1

x ])× G(A[ 1
y ]) consisting of pairs which have the same image in G(A[ 1

xy ]).

(2) The functor G is a coordinatizable formal group law locally with respect to the Zariski topology. That
is, we can choose elements r1, r2, . . . , rn ∈ R such that r1 + · · ·+rn = 1, such that each of the composite
functors

AlgR[ 1
ri

] → AlgR → Ab

has the form Gf for some formal group law f ∈ R[ 1
ri

][[x, y]].

By definition, the moduli stack of the formal groups MFG is the functor which assigns to each commutative
ring R the category of formal group laws over R (the morphisms in this category are given by isomorphisms).

There is a canonical map of stacks Ms
FG = SpecL/G → SpecL/G+ = MFG. To understand this map

(and the failure of general formal groups to be coordinatizable) it is useful to introduce a definition.

Definition 6. Let G be a formal group overR. The Lie algebra of G is the abelian group g = ker(G(R[t]/(t2))→
G(R)).

Note that if G = Gf for some formal group law f , we get a group isomorphism g ' tR[t]/(t2) ' R
(since f(x, y) = x + y to order 2). In fact, g is not just an abelian group: for each λ ∈ R, the equation
t 7→ λt determines a map from R[t]/(t2) to itself, which induces a group homomorphism g→ g. When G is
coordinatizable, this is the usual action of R on itself by multiplication. It follows by descent that the above
formula always determines an action of R on g. Since g ' R locally for the Zariski topology, we deduce that
g is an invertible R-module: that is, it determines a line bundle on the affine scheme SpecR.
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Proposition 7. (1) A formal group G over R is coordinatizable if and only if its Lie algebra g is isomorphic
to R.

(2) The quotient stack Ms
FG parametrizes pairs (G, α), where G is a formal group and α : g ' R is a

trivialization of its Lie algebra.

Proof. We have already established that g ' R when G is coordinatizable. Conversely, fix an isomorphism
g ' R. After localizing SpecR, the group G becomes coordinatizable: that is, we can write G ' Gf for some
f ∈ R[[x, y]]. Modifying f by the action of Gm, we may assume that this isomorphism is compatible with
our trivialization of g. The trouble is that these isomorphisms might not glue. The obstruction to gluing
them determines a cocycle representing a class in H1

Zar(SpecR,G). We claim that this group vanishes. This
is because the group G is an iterated extension of copies of the additive group (A ∈ AlgR) 7→ (A,+), which
has no cohomology on affine schemes.

Assertion (2) is just a translation of the following observation: if f, f ′ ∈ R[[x, y]] are formal group laws,
then an isomorphism of formal groups Gf ' Gf ′ respects the trivializations of the Lie algebras of Gf and
Gf ′ if and only if it is given by a power series of the form g(t) = t + b1t

2 + · · · (a power series of the form
g(t) = b0t+ · · · acts on the Lie algebras by multiplication by the scalar b0).

We can think of the assignment (R,G) 7→ g−1 as defining a line bundle ω on the moduli stack MFG.
In fact, Ms

FG is just the total space of ω with the zero section removed (equivalently, the moduli stack of
trivializations of ω).

We can now be a little bit more precise about the E2-term of the Adams-Novikov spectral sequence.
Translating our gradings into algebraic geometry, we get the following result:

Claim 8. For any spectrum X, the bordism groups MUeven(X) form a module over the Lazard ring L '
π∗MU which carries a compatible action of the group scheme G+, and therefore determines a sheaf Feven on
MFG = SpecL/G+. The E2-term of the Adams-Novikov spectral sequence satisfies

E2a,b
2 = Hb(MFG; Feven⊗ωa).

Similarly, the odd homotopy groups MUodd(X) determine a sheaf Fodd on MFG satisfying

E2a+1,b
2 = Hb(MFG; Fodd⊗ωa).

In order to exploit Claim 8, we will need to understand the structure of the moduli stack MFG. This will
be our goal in the next lecture.
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Heights of Formal Groups (Lecture 12)

April 27, 2010

Our next goal in this course is to understand the structure of the moduli stack MFG of formal groups.
Our starting point is the following result from Lecture 2:

Proposition 1. Let R be a ring of characteristic zero. Then, for every formal group law f ∈ R[[x, y]], there
exist a unique power series g(t) = t+ b1t

2 + b2t
3 + . . . such that f(x, y) = g(g−1(x) + g−1(y)).

Corollary 2. The quotient stack Ms
FG× Spec Q = (SpecL/G)× Spec Q is isomorphic to Spec Q.

Corollary 3. The quotient stack MFG× Spec Q = (SpecL/G+) × Spec Q is isomorphic to the classifying
stack BGm (over Spec Q). In other words, if R is a ring of characteristic zero, then every formal group over
R is determined (up to unique isomorphism) by its Lie algebra.

Example 4. Let f(x, y) = x+ y+xy be the multiplicative formal group law. If R is a ring of characteristic
zero, then f is isomorphic to the additive formal group law via the isomorphism g(t) = et − 1 = t + 1

2 t
2 +

1
6 t

3 + · · · .

The coefficients of the power series et− 1 are not integral. This suggests that over rings which are not of
characteristic zero, the additive and multiplicative formal groups are not isomorphic. To prove this, we need
an invariant which can be used to tell two formal groups apart. First, we need a brief digression concerning
endomorphisms of a formal group law.

Definition 5. Let f ∈ R[[x, y]] be a formal group law over R. An endomorphism of f is a power series
g(t) ∈ tR[[t]] such that f(g(x), g(y)) = gf(x, y).

To prove Proposition 1, we need to introduce the notion of a translation invariant differential on Spf R[[t]].
First, let R[[t]]dt denote a free module of rank 1 over R[[t]]; we will call elements of R[[t]] differentials. Given
a differential g(t)dt, we write f∗(g(t)dt) = g(f(x, y))(∂ f

∂ xdx + ∂ f
∂ y dy) ∈ R[[x, y]]{dx, dy}. We will say that

g(t)dt is an translation invariant differential if we have f∗(g(t)dt) = g(x)dx+ g(y)dy.

Example 6. Let f(x, y) = x+y be the additive formal group law. Then dt ∈ R[[t]] is a translation invariant
differential.

Example 7. Let f(x, y) = x+ y+xy is a multiplicative formal group law. Then dt
1+t = dt− tdt+ t2dt+ · · ·

is a translation invariant differential.

There exists a unique translation invariant differential of the form ω = dt+ c1tdt+ . . .. Moreover, R[[t]]dt
can be identified with the free module R[[t]]ω.

Now suppose that h(t) = a1t+a2t
2 + · · · ∈ tR[[t]]. Composition with h determines a map h∗ from R[[t]]dt

to itself, given by h∗(g(t)dt) = (g ◦ h)(t)dh, where dh = a1dt + 2a2tdt + · · · . Note that h∗ = 0 if and only
if each coefficient iai = 0: since p = 0 in R, this is equivalent to the requirement that ai vanishes for i not
divisible by p. Equivalently, h∗ = 0 if and only if we can write h(t) = h′(tp) for some other power series h′.

Suppose that f and f ′ are formal groups over R, and that h is a morphism from f to f ′: that is, h satisfies
hf(x, y) = f ′(h(x), h(y)). Then h∗ carries invariant differentials with respect to f ′ to invariant differentials
with respect to f . In particular, if we let ωf and ωf ′ be defined as above, then we have h∗ωf ′ = λωf for some
constant λ ∈ R. Unwinding the definitions, we see that h(t) ≡ λt mod (t2). We conclude the following:
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Claim 8. Let f(x, y), f ′(x, y) ∈ R[[x, y]] be formal group laws over a ring R such that p = 0 in R, and let
h ∈ tR[[t]] satisfy hf(x, y) = f ′(h(x), h(y)). Then one of the following conditions holds:

(1) There exists λ 6= 0 ∈ R such that h(t) = λt+ · · · .

(2) There exists another power series h′ such that h(t) = h′(tp).

Let f ′(x, y) be the power series defined by the equation f ′(xp, yp) = f(x, y)p (that is, f ′ is obtained from
f by raising all coefficients to the pth power). In the second case, we get

f ′(h0(xp), h0(yp)) = f ′(h(x), h(y)) = hf(x, y) = h0(f(x, y)p) = h0f
p(xp, yp),

so that h0f
p(x, y) = f ′(h0(x), h0(y)). that is, h0 can be regarded as a morphism from fp into f ′. Repeating

the above argument, we arrive at the following:

Claim 9. Let R be a commutative ring with p = 0, let f(x, y), f ′(x, y) ∈ R[[x, y]] be formal group laws,
and let h be a power series satisfying hf(x, y) = f ′(h(x), h(y)). If h 6= 0, then there exists n ≥ 0 such that
h(t) = h′(tp

n

) with h′(t) = λt+O(t2), λ 6= 0.

Definition 10. Let f(x, y) ∈ R[[x, y]] be a formal group law over a commutative ring R. For every nonneg-
ative integer n, we define the n-series [n](t) ∈ R[[t]] as follows:

(1) If n = 0, we set [n](t) = 0.

(2) If n > 0, we set [n](t) = f([n− 1](t), t).

Remark 11. For every integer n, the n-series [n] determines a homomorphism from the formal group f to
itself. That is, we have f([n](x), [n](y)) = [n]f(x, y).

Since f(x, y) = x+y+ · · · , we immediately deduce that [n](t) = nt+O(t2). Consequently, if p is a prime
number such that p = 0 inR, then the linear term of [p](t) vanishes: that is, we can write [p](t) = ctk+O(tk+1)
for some k > 1.

Since [p] is an endomorphism of f , we immediately obtain the following:

Proposition 12. Let R be a commutative ring in which p = 0 and let f be a formal group law over R. Then
either [p](t) = 0, or [p](t) = λtp

n

+O(tp
n+1) for some n > 0.

Definition 13. Let f be a formal group law over a commutative ring R, and fix a prime number p. We let
vn denote the coefficient of tp

n

in the p-series [p]. We will say that f has height ≥ n if vi = 0 for i < n. We
will say that f has height exactly n if it has height ≥ n and vn ∈ R is invertible.

Remark 14. We have v0 = p. Thus f has height ≥ 1 if and only if p = 0 in R, and height exactly zero if
and only if p is invertible in R.

Remark 15. Let f and f ′ be formal group laws over a commutative ring R, having p-series [p]f and [p]f ′ .
If g(t) is an isomorphism between f and f ′, then we have [p]f ′(t) = (g ◦ [p]f ◦ g−1)(t). It follows immediately
that the heights of f and f ′ are the same.

Example 16. Let f(x, y) = x + y + xy be the formal multiplicative group. Then [n](t) = (1 + t)n − 1. If
p = 0 in R, then [p](t) = (1 + t)p − 1 = tp; thus f has height exactly 1.

Example 17. Let f(x, y) = x+y be the formal multiplicative group over a commutative ring R with p = 0.
Then [p](t) = 0, so f has infinite height. In the next lecture, we will see that the converse holds: if f is a
formal group law of infinite height, then f is isomorphic to the additive group.

It follows from Examples 16 and 17 that the additive and multiplicative formal group laws are not
isomorphic over any commutative ring in which p = 0.
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The Stratification of MFG (Lecture 13)

April 27, 2010

Let p be a prime number, fixed throughout this lecture. Our goal is to describe the structure of the
moduli stack MFG×Spec Z(p) of formal groups over p-local rings.

We begin by recalling a few definitions from the previous lecture. If f(x, y) ∈ R[[x, y]] is a formal group
law over a Z(p)-algebra R, we let vn denote the coefficient on tp

n

in the p-series [p](t). We obtain a sequence
of elements v0 = p, v1, . . . ∈ R. We say that f has height ≥ n if the elements vi vanish for i < n, and height
exactly n if it has height ≥ n and vn is invertible.

Restricting our attention to the universal case, we can regard v0, v1, . . . as elements of the Lazard ring
L. We now describe the relationship between these elements and our presentation of L as a polynomial
ring Z[t1, t2, . . .]. In our earlier discussion, the coordinates ti were not canonically determined. What is
canonically determined is the isomorphism (I/I2)2n ' Ztn, where I is the ideal generated by elements of
positive degree. We can regard each vi as an element of L2(pi−1), so that vi has a canonically defined image
in (I/I2)2(pi−1) ' Ztpi−1.

Proposition 1. The image of vn ∈ (I/I2)2(pn−1) ' Z is pp
n−1 − 1. That is, we can write vn = −tpn−1 +

pp
n−1tpn−1 + decomposables.

Proof. Let k = pn − 1. The homomorphism L→ Z⊕ (I/I2)2k ' Z⊕ Ztk classifies the formal group law

f(x, y) = x+ y +
∑

0<i<pn

1
p

(
pn

i

)
tkx

iyp
n−i.

We obtain formally f(x, y) = x+ y + tk
p ((x+ y)p

n − xpn − ypn

). It follows by induction on a that the series
[a] is given by [a](t) = at + tk

p ((at)p
n − atpn

). In particular, the coefficient of tp
n

in [p](t) is tk
p (pp

n − p) =
(pp

n−1 − 1)tk.

It follows that after localizing at the prime p, we can choose another isomorphism L(p) ' Z(p)[t1, t2, . . .],
where each tpn−1 is given by vn. In other words, the elements vn in L can be regarded as the “interesting”
generators of L (under the isomorphism L ' π∗MU of Quillen’s theorem, these are the generators of Adams
filtration 1).

Corollary 2. Let k be a field of characteristic p. Then, for every integer 1 ≤ n ≤ ∞, there exists a formal
group law of height n over k.

Proof. If n = ∞, we can take f(x, y) ∈ k[[x, y]] to be the additive formal group law f(x, y) = x + y. If
n <∞, we take f to be any formal group law classified by a map L ' Z[t1, t2, . . .]→ k such that ti 7→ 0 for
i < pn − 1, but tpn−1 7→ 1.

Recall that the condition that a formal group f(x, y) ∈ R[[x, y]] have height ≥ n depends only on the
isomorphism class of f . Moreover, it is a local condition: that is, if we are given a collection of elements
a1, . . . , ak ∈ R with a1 + · · ·+ak = 1, then f has height ≥ n over R if and only if f has height ≥ n over R[ 1

ai
]

for all i. Consequently, if F : AlgR → Ab is a formal group over R which is not necessarily coordinatizable,
it makes sense to demand that F has height ≥ n: this is the requirement that F |AlgR′ have height ≥ n,
whenever R′ is an R-algebra such that F |AlgR′ is coordinatizable.
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Remark 3. Here is another interpretation of the height of a formal group. Let F : AlgR → Ab be a
formal group of height exactly n. Then F[p] = ker(F

p→ F) is representable by a finite flat group scheme
over R, of rank pn. To see this, it suffices to work locally: we may therefore assume that F is defined
by a formal group law f(x, y) ∈ R[[x, y]] with p-series [p](t) = λtp

n

+ · · · where λ is invertible. Then
F[p] = SpecR[[t]]/(λtp

n

+ · · · ).
For example, if F is the formal multiplicative group, then F[p] is the group scheme µp, defined by

µp(A) = {a ∈ A : ap = 1}. We have µp = SpecR[a]/(ap − 1), which has rank p.

We can define a closed substack M
≥n
FG of MFG×Spec Z(p) as follows: for every commutative Z(p)-algebra

R, M
≥n
FG(R) is the category of formal groups of height ≥ n over R (with morphisms given by isomorphisms).

We have M
≥n
FG = Spec(L(p)/(v0, . . . , vn−1))/G+, where G+ is the group scheme of coordinate transformations

defined in the previous lecture. This makes sense because the ideal (v0, . . . , vn−1) is G+-invariant: this is a
translation of the statement that the condition of having height ≥ n is an isomorphism invariant condition.

Remark 4. The elements vi ∈ L are not themselves G-invariant: that is, if f and f ′ are isomorphic formal
group laws over a commutative ring R, then the p-series [p]f (t) and [p]f ′(t) are generally different. However,
if we assume that f and f ′ have height ≥ n and g(t) = b0t + b1t

2 + . . . is an invertible power series such
that gf(x, y) = f ′(g(x), g(y)), then g ◦ [p]f ' [p]f ′ ◦ g′. If [p]f (t) = vnt

pn

+ · · · and [p]f ′ = v′nt
pn

+ · · · ,
then examining leading terms gives b0vn = bp

n

0 v′n. In other words, as an element in the quotient ring
L/(v0, . . . , vn−1), vn is invariant under the subgroup G ⊆ G+, and is acted on by the quotient G+/G ' Gm

by the character Gm
pn−1→ Gm. In more invariant terms, this means that we can descend vn to a section of

the line bundle ωp
n−1 on the moduli stack M

≥n
FG.

For 0 ≤ n <∞, we let Mn
FG denote the locally closed substack

M
≥n
FG−M

≥n+1
FG = (SpecL(p)[v−1

n ]/(v0, . . . , vn−1))/G+

of MFG×Spec Z(p). Also let M∞FG = M
≥∞
FG = (SpecL/(v0, v1, . . .))/G+ denote the moduli stack of formal

groups having infinite height. Thus Mn
FG are the open strata for a stratification of the moduli stack MFG.

We will see that each stratum as a relatively simple structure.

Example 5. The moduli stack M0
FG of formal groups of height 0 can be identified with MFG×Spec Q '

BGm.

Note that M
≥1
FG = MFG×Spec Fp. For the remainder of the discussion, we will work with commutative

rings R which have characteristic p: that is, we will assume that p = 0 in R.
The following characterization of height is convenient:

Proposition 6. Let R be a commutative ring such that p = 0 in R, and let f(x, y) ∈ R[[x, y]] be a formal
group law over R. For 1 ≤ n ≤ ∞, the following conditions are equivalent:

(1) The formal group law f has height ≥ n.

(2) There exists a formal group law f ′ which is isomorphic to f such that f ′(x, y) ≡ x + y mod (x, y)p
n

is congruent to x+ y modulo (x, y)p
n

.

Lemma 7. Let R be a commutative ring and let f, f ′ ∈ R[[x, y]] be formal group laws. Suppose that f(x, y)
is congruent to f ′(x, y) modulo the ideal (x, y)m. Let

d =

{
p if m = pn

0 otherwise.

Then there exists a unique constant λ ∈ R such that f(x, y) is congruent to f ′(x, y) +
∑

0<i<m
λ
d

(
m
i

)
xiym−i.

modulo (x, y)m+1.
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Proof. There exist constants {λi,j}i+j=m such that f(x, y) is congruent to f ′(x, y) +
∑

0≤i≤m λi,m−ix
iym−i

modulo (x, y)m+1. Since f(x, 0) = f ′(x, 0) = x, we conclude that λm,0 = 0; similarly λ0,m = 0.
We have

f(f(x, y), z)− f ′(f ′(x, y), z) = f(x, f(y, z))− f ′(x, f ′(y, z)).

Extracting the coefficient of xiyjzk when i+ j + k = m and i, j, k > 0, we conclude that(
i+ j

j

)
λi+j,k =

(
j + k

j

)
λi,j+k.

In Lecture 3, we saw that all solutions to these equations are as stated in the Lemma.

Proof of Proposition 6. First assume that n is finite. We prove by induction on m < pn that, after a change
of variable, we can assume that f(x, y) is congruent to x+y modulo (x, y)m. By the inductive hypothesis, we
may assume that the congruence holds modulo (x, y)m−1. Let d be defined as in Lemma 7, so that f(x, y)
is congruent to x + y +

∑
0<i<m

λ
d

(
m
i

)
xiym−i for some λ ∈ R. If m is not a power of p, then we define

f ′(x, y) = g−1f(g(x), g(y)) where g(t) = t + λtm

d ; a simple calculation shows that f ′(x, y) is congruent to
x + y modulo (x, y)m. If m = pn

′
then we necessarily have n′ < n. We claim that f(x, y) is automatically

congruent to x+ y modulo (x, y)m. This follows from the calculation of the previous lecture: f is classified
by a homomorphism L ' Z[t1, . . . , ] → R, and we wish to show that the image of each tm′ is equal to zero
for m′ < m. By the inductive hypothesis, this holds for m′ < m − 1. Then the image of tm−1 is given by
−vn′ (here vn′ is the coefficient of tp

n′

in the p-series [p](t)), and therefore vanishes since we have assumed
that f has height ≥ n.

Suppose now that n is infinite. Using the above construction, we define a sequence of formal group
laws fm(x, y) which are isomorphic to f such that fm(x, y) is congruent to x+ y modulo (x, y)m. We have
fm(x, y) = g−1

m f(gm(x), gm(y)). By construction, the power series gm(t) converge in the t-adic topology to
an invertible power series g(t); then g−1f(g(x), g(y)) = x+ y is the additive formal group.

Corollary 8. Let f be a formal group law of infinite height over a commutative ring R (necessarily with
p = 0 in R). Then f is isomorphic to the additive formal group law f ′(x, y) = x+ y.

Remark 9. It follows that we can identify M∞FG with the classifying stack for the group of automorphisms
of the additive formal group f(x, y) = x+ y ∈ Fp[[x, y]]. This is the group scheme whose R-points are given
by power series of the form

g(t) = a0t+ a1t
p + a2t

p2 + . . . ∈ R[[t]],

where a0 is invertible. This group scheme is closely related to the structure of the (mod p) Steenrod algebra.

We now study formal groups of height n where 0 < n <∞. The basic result is the following:

Theorem 10 (Lazard). Let k be an algebraically closed field of characteristic p. Then two formal group
laws f(x, y), f ′(x, y) ∈ k[[x, y]] are isomorphic if and only if they have the same height.

Here the condition that k be algebraically closed can be weakened, but not completely removed. To prove
Theorem 10 we need to write down an isomorphism between f and f ′: that is, we need to find an invertible
power series g(t) = b0t+ b1t

2 + . . . such that gf(x, y) = f ′(g(x), g(y)). This identity amounts to a system of
equations that the coefficients bi must satisfy. Theorem 10 asserts that these equations can be solved with
values in an algebraically closed field. In fact, we can be much more precise. Let f(x, y), f ′(x, y) ∈ R[[x, y]]
be formal group laws of height exactly n > 0 over a commutative ring R. Then we can define a ring
R′ = R[b±1

0 , b1, . . .]/I which parametrizes isomorphisms between f and f ′: take I to be the ideal generated
by the coefficients on xiyj in the expression gf(x, y)− f ′(g(x), g(y)). A more precise version of Theorem 10
can be formulated as follows:
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Theorem 11. Let f(x, y), f ′(x, y) ∈ R[[x, y]] be formal group laws of height exactly n > 0 and let R′ be
defined as above. Then R′ isomorphic to the direct limit of a system of (injective) finite etale maps

R = R(0) ↪→ R(1) ↪→ R(2) ↪→ · · ·

When R is an algebraically closed field k, each R(i) is a product of copies of k. It follows that we can
choose a compatible system of ring homomorphisms R(i) → k, which together define a map R′ → k giving
rise to the desired isomorphism of f with f ′. In fact, we need not assume that k is algebraically closed: it
is enough to suppose that k is separably closed or, more generally, that k is a strictly Henselian ring.

We will prove Theorem 11 in the next lecture.
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Classification of Formal Groups (Lecture 14)

April 27, 2010

Our goal in this lecture is to prove Lazard’s theorem, which asserts that a formal group law over an
algebraically closed field is determined up to isomorphism by its height. We will prove this result in the
following more precise form:

Theorem 1. Let f(x, y), f ′(x, y) ∈ R[[x, y]] be formal group laws of height exactly n > 0 and let R′ be the
ring which classifies isomorphisms between f and f ′: that is, R′ = R[b±1

0 , b1, b2, . . .]/I, where I is the ideal
generated by all coefficients in the power series f(g(x), g(y)) − g(f ′(x, y)), where g(t) = b0t + b1t

2 + · · · .
Then R′ is isomorphic to the direct limit of a system of (injective) finite etale maps

R = R(1) ↪→ R(2) ↪→ · · ·

We will regard f and f ′ as fixed for the duration of the proof. Since f ′(x, y) has height exactly n, we
may assume without loss of generality that

f ′(x, y) ≡ x+ y +
∑

0<i<pn

λ

(
pn

i

)
p
xiyp

n−i mod (x, y)p
n+1,

where λ is invertible in R.
Our first step is to choose a more convenient set of polynomial generators for the ring R[b∓1

0 , b1, b2, . . .].

Construction 2. Let A be a commutative R-algebra and suppose we are given a sequence of elements
c0, c1, . . . ∈ A with c0 invertible. We define a sequence of formal group laws fm(x, y) by induction as follows:

(1) Set f1(x, y) = f(x, y).

(2) If m is not a power of p, we let fm(x, y) = g−1
m fm−1(gm(x), gm(y)), where gm(x) = x+ cm−1x

m.

(3) If m = pn
′

for n′ < n, we let fm = fm−1 = g−1
m fm−1(gm(x), gm(y)) where gm(t) = t.

(4) If m = pn, we let fm = g−1
m fm−1(gm(x), gm(y)) where gm(t) = c0t.

(5) If m = pn+n′ for n′ > 0, we let fm = g−1
m fm−1(gm(x), gm(y)) where gm(t) = fm−1(t, cpn′−1t

pn′

).

We note that fm(x, y) tends to a limit f∞(x, y) = g−1f(g(x), g(y)) where g(t) denotes the infinite (conver-
gent) infinite composition g2◦g3◦g4◦· · · . Note that g(t) = b0t+b1t2+b2t3+· · · where bi = ci+decomposables.
This gives an identification of polynomial rings

R[b±1
0 , b1, b2, . . .] ' R[c±1

0 , c1, . . .].

We can therefore identify the ring R′ of Theorem 1w ith R[c±1
0 , c1, . . .]/I, where I is the ideal generated by

all coefficients in the power series f∞(x, y)− f ′(x, y).

Lemma 3. Let c0, c1, . . . ∈ A be as above. Assume that fm−1(x, y) is congruent to f ′(x, y) modulo (x, y)m.
Then fm(x, y) is congruent to f ′(x, y) modulo (x, y)m.
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Proof. In cases (1) through (3), we have gm(t) ≡ t mod tm so it is clear that

fm(x, y) ≡ fm−1(x, y) ≡ f ′(x, y) mod (x, y)m.

In case (4), we have fm−1(x, y) ≡ x+ y mod (x, y)m so that

fm(x, y) = c−1
0 fm−1(c0x, c0y) ≡ x+ y mod (x, y)m

The tricky part is case (5).
The tricky part is case (5). Let m = pn+n′ for n′ > 0, and let c = cpn′−1, so that gm(t) = fm−1(t, ctp

n′

).
For any sequence of variables x1, x2, . . . , xa, we let fm−1(x1, x2, . . . , xa) = fm−1(x1, fm−1(x2, . . . fm−1(xa−1, xa)) . . .)
(this is unambiguous since fm−1 is a formal group law).

We have
gmfm(x, y) = fm−1(gm(x), gm(y)) = fm−1(x, y, cxp

n′

, cyp
n′

.

Let z = z(x, y) be such that cfm(x, y)p
n′

= fm−1(z, cxp
n′

, cyp
n′

), so that fm−1(fm(x, y), z) = fm−1(x, y).
We prove the following by simultaneous induction on m′ ≤ m:

(a) We have z ≡ 0 mod ((x, y)m
′
).

(b) We have fm(x, y) ≡ fm−1(x, y) ≡ f ′(x, y) mod ((x, y)m
′
).

These claims are obvious when m′ = 1, and the implication (a) ⇒ (b) is clear. Assume that (a) and (b)
hold for some integer m′ < m. The inductive hypothesis gives fm−1(z, cxp

n′

, cyp
n′

) ≡ z+ fm−1(cxp
n′

, cyp
n′

)
mod (x, y)m

′+1. Thus z ≡ cfm(x, y)p
n′ −fm−1(cxp

n′

, cyp
n′

) mod (x, y)m
′+1. The inductive hypothesis gives

fm(x, y)p
n′ ≡ fm−1(x, y)p

n′

mod (x, y)p
n′m′ , so we get

z ≡ cfm−1(x, y)p
n′

− fm−1(cxp
n′

, cyp
n′

) mod (x, y)m
′+1

By assumption, we have fm−1(x, y) ≡ f ′(x, y) ≡ x+ y mod (x, y)p
n

. It follows that

cfm−1(x, y)p
n′

− fm−1(cxp
n′

, cyp
n′

) ≡ c(x+ y)p
n′

− cxp
n′

− cyp
n′

≡ 0 mod (x, y)p
n+n′

.

Since m′ + 1 ≤ m = pn+n′ , we conclude that z ≡ 0 mod (x, y)m
′+1 as desired.

We now return to the proof of Theorem 1. By Lemma 3, we have f∞(x, y) = f ′(x, y) if and only if
fm(x, y) ≡ f ′(x, y) mod (x, y)m+1 for all m. Note that fm(x, y) depends only on the parameters ci where
i belongs to the set Sm = {i < m : i 6= pk − 1} ∪ {pk − 1 : pn+k ≤ m}. R(m) denote the quotient ring
R[ci]i∈Sm

/I(m) for m < pn, and the quotient ring R[ci, c−1
0 ]iıSm

/I(m) for m ≥ pn, where I(m) is the ideal
generated by the coefficients of xiyj in fm(x, y) − f ′(x, y) where i + j ≤ m. Then R′ is the colimit of the
sequence

R = R(1)→ R(2)→ R(3)→ · · ·
To prove Theorem 1, it will suffice to show that each of the inclusions R(m − 1) → R(m) is a finite etale
extension (which is injective). There are several cases to consider:

(a) Suppose that m is not a power of p. Then R(m) = R(m− 1)[cm−1]/J , where J is the ideal generated
by coefficients of total degree m in the expression fm(x, y)− f ′(x, y). Note that fm−1(x, y) ≡ f ′(x, y)
mod (x, y)m, so (by the lemma of the previous lecture) we can write

f ′(x, y) ≡ fm−1(x, y) + µ
∑

0<i<m

(
m
i

)
d
xiym−i mod (x, y)m+1

where d is the greatest common divisor of the binomial coefficients
(
m
i

)
. Since m is not a power of p, the

integer d is invertible in R. A simple calculation gives fm(x, y) ≡ fm−1(x, y)+ cm(xm+ym− (x+y)m)
mod (x, y)m+1. Thus fm(x, y) ≡ f ′(x, y) if and only if cm = −µd . It follows that R(m) ' R(m −
1) (that is, the coefficient cm is uniquely determined by the requirement that f ′(x, y) ≡ fm(x, y)
mod (x, y)m+1.
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(b) Suppose that m = pn
′
, n′ < n. Then R(m) = R(m − 1)/J , where J is the ideal generated by

coefficients of degree m in the difference fm(x, y) − f ′(x, y). We have fm(x, y) = fm−1(x, y) ≡
f ′(x, y) ≡ x + y mod (x, y)p

m

. It follows from the lemma of the last lecture that fm(x, y) =

x+y+µ
∑

0<i<m
(pn′

i )
p xiym−i for some uniquely determined constant µ. Since fm is isomorphic to f , it

has height exactly n, and therefore µ = 0. It follows that fm(x, y) ≡ x+ y ≡ f ′(x, y) mod (x, y)p
m+1,

so that again R(m) ' R(m− 1).

(c) Suppose that m = pn. Then R(m) = R(m − 1)[c±1
0 ]/J where J is the ideal generated by coefficients

of degree m in fm(x, y)− f ′(x, y). We have fm−1(x, y) ≡ f ′(x, y) ≡ x+ y mod (x, y)p
m

so that

fm−1(x, y) ≡ x+ y + λ′
∑

0<i<m

(
m
i

)
p
xiym−j mod (x, y)m+1

for some constant λ′. It follows that

fm(x, y) ≡ x+ y + cp
n−1

0 λ′
∑

0<i<m

(
m
i

)
p
xiym−j mod (x, y)m+1.

Consequently, fm(x, y) ≡ f ′(x, y) mod (x, y)m+1 if and only if cp
n−1

0 λ′ = λ. Since f and f ′ have
height exactly n, the constants λ and λ′ are invertible; thus R(m) ' R(m− 1)[c0]/(cpn−1

0 − λ
λ′ ).

(d) Suppose that m = pn+n′ for n′ > 0. Let c = cpn′−1, so that R(m) ' R(m − 1)[c]/J , where J is the
ideal generated by coefficients on monomials of degree m in fm(x, y)− f ′(x, y). This is the tricky part.

Since fm−1(x, y) ≡ f ′(x, y) mod (x, y)m, we can write

fm−1(x, y) ≡ f ′(x, y) + µ
∑

0<i<m

(
m
i

)
p
xiym−i

for some constant µ. Let z = z(x, y) be as in the proof of Lemma 3, so that z(x, y) ∈ (x, y)m. We have

fm−1(x, y) = fm−1(fm(x, y), z) ≡ fm(x, y) + z mod (x, y)m+1.

Consequently, we have fm(x, y) ≡ f ′(x, y) mod (x, y)m+1 if and only if z ≡ µ
∑

0<i<m
(m

i )
p xiym−i

mod (x, y)m+1.

The proof of Lemma 3 gives

z ≡ cfm−1(x, y)p
n′

− fm−1(cxp
n′

, cyp
n′

) mod (x, y)m+1.

We have

fm−1(x, y) ≡ f ′(x, y) ≡ x+ y + λ
∑

0<j<pn

(
pn

j

)
p
xjyp

n−j mod (x, y)p
n+1.

It follows that

z ≡ (cλp
n′

− λcp
n

)
∑

0<j<pn

(
pn

j

)
p
xp

n′ jym−p
n′ j mod (x, y)m+1.

Thus fm(x, y) ≡ f ′(x, y) mod (x, y)m+1 if and only if the following conditions are satisfied:

(i) The coefficients µ (pn+n′

i )
p vanishes when i is not divisible by pn.
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(ii) For 0 < j < pn
′
, we have

µ

(
pn+n′

pnj

)
p

= (λp
n′

c− λcp
n

)

(
pn′

j

)
p

We claim that these conditions are satisfied if and only if cp
n − λp

n′−1c + µ
λ = 0. It follows that

R(m) = R(m− 1)[c]/(cp
n −λpn′−1c+ µ

λ ) is a finite étale extension of R(m− 1). To complete the proof,
we verify the following combinatorial identity:

Lemma 4. Let n be an integer. Then(
pn

i

)
≡

{(
p
j

)
if i = pn−1j

0 otherwise
mod p2.

Proof. Let G = Z/pnZ be a cyclic group. Then G acts by translation on the set S of all i-element
subsets of G. Let G′ be the subgroup pZ/pnZ. Any point of S is either fixed by G′, or is fixed by a
smaller subgroup and therefore has size divisible by p2. It follows that the cardinality |S| is congruent
modulo p2 to the cardinality of the fixed point set |SG′ |, which is the number of ways to choose a
subset of the quotient G/G′ having cardinality j = i

pn−1 .
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Flat Modules over MFG (Lecture 15)

April 27, 2010

We have seen that if E is a complex oriented cohomology theory, then the coefficient ring π∗E has the
structure of an algebra over the Lazard ring L ' π∗MU. Our next goal is to address the converse: suppose
we are given a graded ring R equipped with a homomorphism L → R (corresponding to a graded formal
group over R). When can we find a complex oriented cohomology theory E such that R = π∗E?

There is an obvious way to try to write down such a cohomology theory. Namely, for any space X, we
can attempt to define the E-homology of X by the formula E∗(X) = MU∗(X)⊗π∗MU R = MU∗(X)⊗L R.
However, this prescription does not always work: in order to get a homology theory, we to know that certain
sequences of abelian groups are exact. The functor • 7→ •⊗LR generally does not preserve exact sequences.
Of course, if R is flat over L, there is no problem. However, the condition of flatness over the Lazard ring L
is very restrictive, because L ' Z[t1, t2, . . .] is very large. Fortunately, we can get by with much less: we do
not need to assume that R is flat over L, only that R is flat over the moduli stack MFG.

We begin by reviewing the notion of quasi-coherent sheaves on a stack.

Definition 1. A quasi-coherent sheaf on the moduli stack MFG is a rule which specifies, for every R-point
η ∈ MFG(R) (corresponding to a formal group over R), an R-module M(η). This rule is required to be
functorial in the following sense: given a homomorphism R → R′ carrying η to η′ ∈ MFG(R′), we have a
canonical isomorphism M(η′) 'M(η)⊗R R′.

Remark 2. There is an obvious analogue of Definition 1 if the moduli stack MFG is replaced by any other
stack.

The collection of quasi-coherent sheaves on MFG forms an abelian category, which we will denote by
QCoh(MFG).

Definition 3. Let M be a quasi-coherent sheaf on MFG. We will say that M is flat if, for every R-point
η ∈ MFG, the R-module M(η) is flat over R. Similarly, we will say that M is faithfully flat if each M(η) is
faithfully flat over R.

Remark 4. The condition that an R-module be flat (or faithfully flat) is local with respect to the Zariski
topology on SpecR. Consequently, if M is a quasi-coherent sheaf on MFG, then to verify the flatness (or
faithful flatness) of M it suffices to test the condition of Definition 3 in the case where η ∈MFG(R) classifies
a coordinatizable formal group over R. In this case, η is the image of the point η0 ∈MFG(L) classifying the
universal formal group law. In other words, M is flat (or faithfully flat) if and only if M(η0) is flat (faithfully
flat) as a module over the Lazard ring L.

Let R be any ring, and suppose we are given a map q : SpecR → MFG corresponding to a point
η ∈ MFG(R). Then the forgetful functor M 7→ M(η) can be identified with the pullback functor q∗ :
QCoh(MFG) → QCoh(SpecR) ' ModR. This functor has a right adjoint q∗ : ModR → QCoh(MFG). In
concrete terms, if N is an R-module, then q∗(N) is a quasi-coherent sheaf on MFG given by the formula
q∗(N)(η′) = q′∗(p

′)∗M = M ⊗R B, where η′ ∈ MFG(R′) classifies a map p : SpecR′ → MFG and B is
the (R ⊗ R′)-algebra which classifies the universal isomorphism between the formal groups over R and R′
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determined by η and η′, so that we have a pullback square

SpecB
q′ //

p′

��

SpecR′

p

��
SpecR

q // MFG .

Given q : SpecR → MFG, we say that an R-module N is flat (or faithfully flat) over MFG if q∗N is flat
(faithfully flat) over MFG. We will say that q is flat (faithfully flat) over MFG if the R-module R is flat
(faithfully flat) over MFG.

The usefulness of this notion to us is expressed by the following:

Proposition 5. Let q : SpecR → MFG be a map (classifying a formal group η ∈ MFG(R)) and let N be
an R-module which is flat over MFG. Then the functor M 7→M(η)⊗R N = q∗M ⊗R N is an exact functor
from QCoh(MFG) to ModR.

Proof. The question is local on SpecR; we may therefore assume that η classifies a coordinatizable formal
group. Let p : SpecL→MFG classify the universal formal group law, so we have a pullback diagram

SpecR[b±1
0 , b1, b2, . . .]

q′ //

p′

��

SpecL

p

��
SpecR

q // MFG

Since p′ is a faithfully flat map, it will suffice to show that the functor

M 7→ p′
∗(q∗M ⊗R N) ' (qp′)∗M ⊗R[b±1

0 ,b1,...]
p′
∗
N ' (p∗M)⊗L p′

∗
N

is exact. The flatness of N is precisely the condition that p′∗N = N [b±1
0 , b1, . . .] is a flat L-module.

Corollary 6. Let M be a graded module over the Lazard ring L. If M is flat over MFG, then the functor
X 7→ MU∗(X)⊗LM is a homology theory, representable by some spectrum E.

Example 7. Fix a prime number p, and let R ' Z(p)[v1, v2, . . .] be the L-module obtained by taking the
quotient of L(p) ' Z(p)[t1, t2, . . .] by the ideal generated by {ti}i+16=pk . We claim that the map SpecR →
SpecL→MFG is flat. To prove this, we must show that if we form the fiber product

SpecB
q //

��

SpecL

��
SpecR // MFG,

the map q comes from a flat ring homomorphism L → B. Note that we have two ring homomorphisms
φ0, φ1 : L → L[b±1

0 , b1, . . .]; φ0 is the obvious map, and φ1 classifies the formal group over L[b±1
0 , b1, . . .]

obtained from the universal formal group by the change of variables g(t) = b0t+ b1t
2 + · · · . Unwinding the

definitions, we see that B can be identified with the quotient of L(p)[b±1
0 , b1, b2, . . .] by the ideal generated

by {φ1(ti)}i+16=pk . The proof of Lazard’s theorem shows that if i+ 1 is not a power of p, then the image of
ti under the composite map

L
φ1→ L(p)[b±1

0 , b1, b2, ]→ Z(p)[b1, b2, . . .]

is given by dbi + decomposables, where d is invertible in Z(p). It follows that we can replace bi by φ1(ti) in
our set of polynomial generators for L(p)[b±1

0 , b1, b2, . . .], so that B is a polynomial ring over L(p)[b±1
0 ] and in

particular flat over L(p).
It follows from Corollary 6 that the construction X 7→ MU∗(X) ⊗L R ' MU∗(X)(p)/(ti)i+16=pk is a

homology theory. This homology theory is called Brown-Peterson homology and is denoted by BP∗(X).
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Remark 8. The above proof gives more: not only is Spec Z(p)[v1, v2, . . .] flat over MFG, it is faithfully flat
over the localized moduli stack MFG×Spec Z(p).

Corollary 6 highlights the importance of the condition of flatness over the moduli stack MFG. In the next
lecture, we will establish the following criterion for flatness:

Theorem 9 (Landweber). Let M be a module over the Lazard ring L. Then M is flat over MFG if and
only if, for every prime number p, the sequence v0 = p, v1, v2, . . . ∈ L is a regular sequence for M .

An L-module M satisfying the hypothesis of Theorem 9 is said to be Landweber-exact. Every Landweber-
exact graded L-module M determines a homology theory E, given by E∗(X) = MU∗(X)⊗LM . In particular
we have π∗E = E∗(∗) 'M .

Remark 10. Recall that if R is a commutative ring and M is an R-module, then a sequence of elements
x0, x1, x2, . . . ∈ R is said to be regular for M if x0 is not a zero divisor on M , x1 is not a zero divisor on
M/x0M , x2 is not a zero divisor on M/(x0M +x1M), and so forth. Note that if a module M is trivial, then
every element of R is a non zero-divisor on M .

Example 11. Let M be an L-module which is a rational vector space. Then M is Landweber-exact: for
every prime p, v0 = p acts invertibly on M , so M/v0M ' 0.

Example 12. Let R = Z[β, β−1], where β has degree 2. We have a graded formal group law f(x, y) =
x+ y+ βxy over R (a graded version of the multiplicative formal group over Z), which determines a map of
graded rings L→ R. We claim that R is Landweber exact. Fix a prime p. Then v0 = p is a non zero-divisor
on R. Modulo p, the p-series [p](t) for f is given by the formula [p](t) = βp−1tp, so that v1 ≡ βp−1 mod p
and therefore v1 acts invertibly on R/pR (and so every element of R is a nonzero divisor on R/(v0R+v1R)).

Using Landweber’s theorem, we deduce the existence of a homology theory E∗(X) = MU∗(X)⊗LZ[β, β−1]
with π∗E ' R = Z[β, β−1]. We will later see that E∗ is given by complex K-theory.

Example 13. Let R be a commutative ring and let E be an elliptic curve defined over R. We can associate
to E a formal group Ê, where Ê(A) ⊆ Hom(SpecA,E) is the collection of all A-points of E for which the
diagram

SpecA/m //

��

SpecA

��
SpecR 0 // E

commutes; here m denotes the nilradical of A. This construction determines a map from the moduli stack
MEll of elliptic curves to the moduli stack MFG of formal groups.

If we fix a prime number p and a trivialization of the Lie algebra of E, then v1 ∈ R/pR can be identified
with the classical Hasse invariant: it vanishes precisely on the closed subscheme of SpecR/pR over which E
is supersingular. Moreover, v2 is invertible in R/(pR+ v1R): that is, the formal group of an elliptic curve is
everywhere of height ≤ 2.

To satisfy Landweber’s criterion, the pair (E,R) must satisfy the following:

(1) Every prime number p is a non zero-divisor in R: that is, R is flat over Z.

(2) For every prime number p, the Hasse invariant of E is a non zero-divisor in R/pR.

If these conditions are satisfied, then we can define a homology theory Ell∗(X), where Ell∗(X) = MU∗(X)⊗L
R[β, β−1]. The representing spectrum Ell is sometimes called elliptic cohomology.

Remark 14. Conditions (1) and (2) satisfied in “universal” cases; that is, for elliptic curves over SpecR
which define an étale map from SpecR to the moduli stack MEll. In other words, the map of stacks MEll →
MFG is flat.
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The Landweber Exact Functor Theorem (Lecture 16)

April 27, 2010

Our goal in this lecture is to prove the following result:

Theorem 1. Let M be a module over the Lazard ring. Then M is flat over MFG if and only if, for every
prime number p, the elements v0 = p, v1, v2, . . . ∈ L form a regular sequence for M .

We first note that M is flat over MFG if and only if, for every prime number p, the localization M(p) =
M ⊗ Z(p) is flat over MFG×Spec Z(p). We therefore fix a prime number p and work locally at p.

Lemma 2. Let q : Spec Z(p)[v1, v2, . . .]→MFG be the flat map considered in the previous lecture. Let M be
a quasi-coherent sheaf on MFG×Spec Z(p). Then M is flat over MFG×Spec Z(p) if and only if q∗M is a
flat Z(p)[v1, v2, . . .] module.

Proof. The “only if” direction is immediate from the definitions. Conversely, suppose that q∗M is flat. Fix
any map f : SpecR → MFG×Spec Z(p); we wish to prove that f∗M is a flat R-module. Form a pullback
diagram

SpecB //

��

SpecR

f

��
Spec Z(p)[v1, v2, . . .]

q // MFG× Spec Z(p).

We saw in the last lecture that q is faithfully flat, so R → B is a faithfully flat map of commutative rings.
Consequently, it will suffice to show that f∗M⊗RB is a flat B-module. But f∗M⊗RB = q∗M⊗Z(p)[v1,v2,...]B,
which if flat over B since q∗M is flat over Z(p)[v1, v2, . . .].

Let us now return to the proof of Theorem 1. Let M be a module over the localized Lazard ring L(p)

such that v0 = p, v1, v2, . . . is a regular sequence on M . We wish to prove that the pushforward of M along
the map SpecL(p) →MFG×Spec Z(p) is flat. Form a pullback square

SpecB //

��

SpecL(p)

��
Spec Z(p)[v1, v2, . . .] // MFG× Spec Z(p).

By the Lemma, it will suffice to show that MB = M ⊗L(p) B is flat as a module over the ring Z(p)[v1, v2, . . .].

In other words, we wish to prove that for every R-module N , the groups TorZ(p)[v1,...]

i (MB , N) vanish for
i > 0.

Since the functor N 7→ TorZ(p)[v1,v2,...]

i (MB , N) commutes with filtered colimits, it will suffice to show
that the groups TorR

i (MB , N) vanish when i > 0 and N is a finitely presented Z(p)[v1, v2, . . .]-module (every
module is a filtered colimit of finitely presented modules). Note that a finite presentation of an Z(p)[v1, v2, . . .]-
module can reference only finitely many of the polynomial generators v1, v2, . . .. In other words, we may
assume that there exists an integer n ≥ 1 such that N ' N0[vn+1, vn+2, vn+3, . . .], where N0 is a module
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over the ring Z(p)[v1, . . . , vn]. In this case, we have TorZ(p)[v1,v2,...]

i (MB , N) ' TorZ(p)[v1,...,vn]

i (MB , N0). In
other words, we are reduced to proving that MB is a flat module over Z(p)[v1, . . . , vn] for all n.

Let us now address a potentially confusing point. By construction, the ring B is equipped with homo-
morphisms φ′ : Z(p)[v1, v2, . . .]→ B and φ′′ : L(p) → B. Consequently, we obtain two different sequences of
elements

v′0, v
′
1, v
′
2, . . . v′′0 , v

′′
1 , v
′′
2 , . . .

in B, given by v′i = φ′(vi) and v′′i = φ′′(vi). It follows that, for each m ≥ 0, the finite sequences
(v′0, v

′
1, v
′
2, . . . , v

′
m−1) and (v′′0 , v

′′
1 , . . . , v

′′
m−1) generate the same ideal Im ⊆ B.

We will prove the following:

Claim 3. For m ≤ n+1, the quotient MB/ImMB is a flat module over the ring Z(p)[v1, v2, . . . , vn]/(p, v1, . . . , vm−1).

When m = 0, Claim 3 reduces to what we need to know. We will prove Claim 3 by descending induction
on m. Note that if m = n + 1, then Z(p)[v1, . . . , vn]/(p, v1, . . . , vn) ' Fp is a field and there is nothing to
prove. To carry out the inductive step, we need the following algebraic lemma:

Lemma 4. Let R be a commutative ring containing a non zero-divisor x, and let M be an R-module. Then
M is flat over R if and only if the following conditions are satisfied:

(1) The element x is a non zero-divisor on M .

(2) The quotient M/xM is a flat R/(x)-module.

(3) The module M [x−1] is flat over R[x−1].

Proof. The necessity of conditions (1) through (3) is easy (and not needed for our application). Let us
assume that conditions (1), (2), and (3) are satisfied. We wish to prove that M is flat over R: that is, for
any R-module N , the groups TorR

i (M,N) vanish for i > 0. We carry out the proof in several steps:

(a) Suppose that N is annihilated by x: that is, N is a module over R/(x). Assumption (1) gives
TorR

i (M,N) ' TorR/(x)
i (M/xM,N), which vanishes for i > 0 by assumption (2).

(b) Suppose that N is annihilated by xk for some k. We prove by induction on k that TorR
i (M,N) ' 0

for i > 0. We have an exact sequence

0→ K → N → xN → 0,

where K is the kernel of the map N → xN . Since TorR
i (M,K) ' 0 by (a) and TorR

i (M,xN) ' 0 by
the inductive hypothesis, we deduce from the exact sequence

TorR
i (M,K)→ TorR

i (M,N)→ TorR
i (M,xN)

that TorR
i (M,N) ' 0.

(c) Suppose that N consists of x-power torsion: that is, every element n ∈ N satisfies xkn = 0 for k � 0.
Then N is a filtered colimit of submodules annihilated by xk, so that TorR

i (M,N) ' 0 for i > 0 by
part (b).

(d) Let N be arbitrary, and let K be the kernel of the map N → N [x−1]. Then K satisfies the hypothesis
of (c), so that TorR

i (M,K) ' 0 for i > 0. Consequently, to prove that TorR
i (M,N) ' 0, it suffices to

show that TorR
i (M,N/K) ' 0; that is, we may replace N by N/K and thereby assume that the map

N → N [x−1] is injective.

(e) Let N be as in (d), and let K ′ be the cokernel of the injection N → N [x−1]. Then K ′ satisfies the
condition of (c), so that TorR

i (M,K ′) ' 0 for i > 0. Consequently, to prove that TorR
i (M,N) ' 0, it

will suffice to show that TorR
i (M,N [x−1]) ' 0.
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(f) We are now reduced to the case where N ' N [x−1]: that is, N is a module over R[x−1]. We then have
TorR

i (M,N) ' TorR[x−1]
i (M [x−1], N), which vanishes for i > 0 by assumption (3).

Let us now return to the proof of Claim 3. Let m ≤ n; we wish to prove that MB/ImMB is flat over
R = Z(p)[v1, . . . , vn]/(p, v1, . . . , vm−1). Note that MB/ImMB can be identified with the tensor product

B ⊗L(p) (M/(v0, . . . , vm−1)).

By assumption, vm is a non zero-divisor on the quotient M/(v0, . . . , vm1). Since B is flat over L(p), we have
an exact sequence

0→MB/ImMB
v′′m→ MB/ImMB →MB/Im+1MB → 0.

Since v′′m is congruent to an invertible multiple of v′m moduli Im, we deduce that vm ∈ R is a non zero-
divisor on MB/ImMB . Moreover, the quotient MB/(Im, vm)MB 'MB/Im+1MB is flat over R/(vm) by the
inductive hypothesis. By the Lemma, we are reduced to proving that (MB/ImMB)[v−1

m ] is flat over R[vm]−1.
We will prove the following stronger statement:

Claim 5. For every integer m ≥ 0, the module (MB/ImMB)[v−1
m ] is flat over (Zp[v1, v2, . . .]/(p, v1, . . . , vm−1))[v−1

m ].

We have a pullback diagram of stacks

SpecB/(p, v1, . . . , vm−1)[v−1
m ] //

��

SpecL(p)/(v0, . . . , vm−1)[v−1
m ]

��
Spec(Z(p)[v1, v2, . . .]/(p, v1, . . . , vm−1))[v−1

m ] // Mm
FG .

Claim 5 is a special case of the assertion that the L(p)/(v0, . . . , vm−1)[v−1
m ]-module (M/(v0, . . . , vm−1)M)[v−1

m ]
is flat over Mm

FG. This in turn follows from:

Claim 6. Every quasi-coherent sheaf on the stack Mm
FG is flat.

We will prove this claim when m > 0; the proof when m = 0 is similar. Let X be a quasi-coherent
sheaf on Mm

FG. We wish to prove that q∗X is a flat A-module, for any map SpecA → Mm
FG classifying a

formal group height exactly m on A. Working locally on SpecA, we may assume that the formal group is
coordinatizable. Choose a formal group law of height m over Fp classified by a map f : Spec Fp → Mm

FG,
and form a pullback diagram

SpecA′ //

��

Spec Fp

f

��
SpecA // Mm

FG

In Lecture 14, we proved that A′ is a direct limit of a sequence of injective finite etale ring extensions; in
particular, A′ is faithfully flat over A. Consequently, it will suffice to prove that q∗X ⊗A A′ is flat over A′.
But q∗X ⊗A A′ ' f∗X ⊗Fp A

′. We are therefore reduced to proving that f∗X is flat over Fp, which is
obvious since Fp is a field.
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Phantom Maps (Lecture 17)

April 27, 2010

We begin by recalling Adams’ variant of the Brown representability theorem:

Theorem 1 (Adams). Let E be a spectrum and let h∗ be a homology theory. Suppose we are given a map of
homology theories α : E∗ → h∗ (that is, a collection of maps E∗(X,Y ) → h∗(X,Y ), depending functorially
on a pair of spaces (Y ⊆ X) and compatible with boundary maps). Then there is a map of spectra β : E → E′

and an isomorphism of homology theories E′∗ ' h′∗ such that α is given by the composition E∗ → E′∗ ' h∗.

Corollary 2 (Adams). Let E and E′ be spectra, and let α : E∗ → E′∗ be a map between the corresponding
homology theories. Then α is induced by a map of spectra α : E → E′.

Proof. Let h∗ = E′∗. Applying Theorem 1 the evident map α : E∗ ⊕ E′∗ → h∗, we get a spectrum F and
a map E ⊕ E′ → F inducing α. This comes from a pair of spectrum maps f : E → F and g : E′ → F .
The map g induces an isomorphism π∗E

′ = h∗(∗) = π∗F and is therefore a homotopy equivalence. Then
α : g−1 ◦ f is the desired map of spectra from E to E′.

Corollary 3 (Adams). Every homology theory h∗ is represented by a spectrum E, which is uniquely defined
up to (nonunique) homotopy equivalence.

Proof. The existence of E follows from Theorem 1. For the uniqueness, we note that if E and E′ are two
spectra with E∗ ' h∗ ' E′∗, then the isomorphism E∗ ' E′∗ is induced by a map of spectra E → E′

(Corollary 2), which is automatically a homotopy equivalence.

In the situation of Corollary 2, the map α is generally not determined by α, even up to homotopy. This
is due to the existence of phantom maps:

Definition 4. Let f : E → E′ be a map of spectra. We say that f is a phantom if the underlying map of
homology theories E∗ → E′∗ is zero: that is, for every space X, the map E∗(X)→ E′∗(X) is identically zero.

Lemma 5. Let f : E → E′ be a map of spectra. The following conditions are equivalent:

(1) The map f is a phantom.

(2) For every spectrum X, the map E∗(X)→ E′∗(X) is zero.

(3) For every finite spectrum X, the map E∗(X)→ E′∗(X) is zero.

(4) For every finite spectrum X, the map E∗(X)→ E′
∗(X) is zero.

(5) For every finite spectrum X and every map g : X → E, the composition f◦g : X → E′ is nullhomotopic.

Proof. The implication (2) ⇒ (1) is obvious, and the converse follows from the fact that every spectrum
X can be written as a filtered colimit lim−→Σ∞−nΩ∞−nX. The implication (2) ⇒ (3) is obvious, and the
converse follows from the fact that every spectrum is a filtered colimit of finite spectra. The equivalence of
(4) and (5) follows by Spanier-Whitehead duality, and the equivalence of (4) and (5) is a tautology.
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Let us now return to the setting of the previous lectures. Let L ' Z[t1, . . .] denote the Lazard ring,
and let M be a graded L-module. Assume that the grading on M is even: that is, Mk ' 0 for every odd
number k. In the last lecture, we saw that if M satisfies Landweber’s criterion: that is, if the sequence
v0 = p, v1, v2, . . . ∈ L is M -regular for every prime number p, then the construction

X 7→ MU∗(X)⊗LM

is a homology theory. It follows from Corollary 3 that this homology theory is represented by a spectrum E,
which is unique up to homotopy equivalence. We will say that a spectrum E is Landweber-exact if it arises
from this construction. Our goal in this lecture is to show that, as an object of the homotopy category of
spectra, E is functorially determined by M . This is a consequence of the following assertion:

Theorem 6. Let E be a Landweber-exact spectrum, and let E′ be a spectrum such that πkE′ ' 0 for k odd.
Then every phantom map f : E → E′ is nullhomotopic.

Corollary 7. Let E and E′ be Landweber exact spectra. Then every phantom map f : E → E′ is null-
homotopic. In particular, every nontrivial endomorphism of E acts nontrivially on the homology theory
E∗.

To prove Theorem 6, we introduce two new notions:

Definition 8. We will say that a finite spectrum X is even if the homology groups Hk(X; Z) are free
abelian groups, which vanish when k is odd. Equivalently, a finite spectrum X is even if it admits a finite
cell decomposition using only even-dimensional cells.

We say that a spectrum E is evenly generated if, for every map X → E where X is a finite spectrum,
there exists a factorization X → X ′ → E where X ′ is a finite even spectrum.

Theorem 6 is a consequence of the following two assertions:

Proposition 9. Every Landweber exact spectrum E is evenly generated.

Proposition 10. Let E be an evenly generated spectrum and let E′ be a spectrum whose homotopy groups
are concentrated in even degrees. Then every phantom map f : E → E′ is null.

We begin by proving Proposition 9. Let E be a Landweber-exact spectrum, associated to a graded
L-module M , and let f : X → E be a map where X is a finite spectrum. We can associate to f an
element of E0(X) = E0(DX) = MU0(DX)⊗LM = MU0(X)⊗LM , which can be written as

∑
cimi where

ci ∈ MUdi(X) and mi ∈Mdi
. Then f factors as a composition

X
{ci}→

⊕
Σdi MU mi→ E.

We may therefore replace E by
⊕

Σdi MU: that is, it suffices to prove that
⊕

Σdi MU is evenly generated.
Since M is evenly graded, each of the integers di is even. We can therefore reduce to showing that MU itself
is evenly generated.

Since MU ' lim−→MU(n), it suffices to show that each MU(n) is evenly generated. Recall that MU(n)
is the Thom complex of the virtual bundle ζ − Cn, where ζ is the tautological vector bundle on BU(n).
We can write BU(n) ' lim−→m

Grass(n, n + m), wehre Grass(n, n + m) denotes the Grassmannian of n-
dimensional subspaces of Cn+m. It follows that MU(n) is a direct limit of Thom spectra associated to the
finite-dimensional Grassmannians Grass(n, n + m). It therefore suffices to show that each of these Thom
complexes is an even finite spectrum. We now note that the space Grass(n, n + m) admits a finite cell
decomposition with cells of even dimension: for example, we can take the Bruhat decomposition. This
proves Proposition 9.
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We now prove Proposition 10. Let E be an evenly generated spectrum. We begin by describing the
structure of phantom maps from E to other spectra. Let A be a set of representatives for all homotopy
equivalence classes of maps Xα → E, where Xα is an even finite spectrum, and form a fiber sequence

K →
⊕
α

Xα
u→ E.

This sequence is classified by a map u′ : E → Σ(K). Since E is evenly generated, every map from a finite
spectrum X into E factors through u, so the composite map X → E → Σ(K) is null: in other words, u′ is a
phantom map. Conversely, if f : E → E′ is any phantom map, then f ◦u is nullhomotopic, so that f factors
as a composition E → Σ(K)→ E′. Consequently, to prove Proposition 10, it will suffice to prove that every
map Σ(K)→ E′ is nullhomotopic: that is, that the group E′

−1(K) is zero.
Since the homotopy groups of E′ are concentrated in even degrees, the Atiyah-Hirzebruch spectral se-

quence shows that E′−1(X) ' 0 whenever X is a finite even spectrum. It will therefore suffice to prove the
following:

(∗) The spectrum K is a retract of a direct sum of even finite spectra.

To prove (∗), we will compare the cofiber sequence

K →
⊕
α∈A

Xα → E

with another cofiber sequence of spectra. Let B be the collection of triples (α, α′, f), where α, α′ ∈ A and f
ranges over all homotopy classes of maps fitting into a commutative diagram

Xα

!!CC
CC

CC
CC

f // Xα′

}}{{
{{

{{
{{

E.

For each β = (α, α′, f) ∈ B, we let Yβ = Xα. We have a canonical map φ :
⊕

β∈B Yβ →
⊕

α∈AXα, whose
restriction to Yβ for β = (α, α′, f) given by the difference of the maps Yβ = Xα →

⊕
α∈AXα and

Yβ = Xα
f→ Xα′ →

⊕
α∈A

Xα.

Let F be the cofiber of the map φ. By construction, we have a map of fiber sequences⊕
β∈B Yβ //

��

⊕
α∈AXα

u //

��

F

��
K //

⊕
α∈AXα // E.

We now construct a map of spectra q : E → F . By Corollary 2, it will suffice to define a map of
homology theories E∗ → F∗. We will give a map E∗(X) → F∗(X) defined for every spectrum X. Since
homology theories commute with filtered colimits, it will suffice to consider the case where X is a finite
spectrum. Replacing X by its Spanier-Whitehead dual, we are reduced to the problem of producing a map
q(f) : X → F for every map of spectra f : X → E for X finite.

Here is our construction. Since E is evenly generated, every map f : X → E factors through some map

X
f ′

→ Xα′ → E for α′ ∈ A. We define q(f) to be the composite map X
f ′

→ Xα′ →
⊕

α∈AXα → F . We
must show that this construction is well-defined; that is, it does not depend on the choice of f ′. To this end,
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suppose we are given another factorization of f X
f ′′

→ Xα′′ → E, where α′′ ∈ A. Let Y denote the pushout
Xα′

∐
X Xα′′ . Then Y is a finite spectrum, and our data gives a canonical map Y → E. Since E is evenly

generated, this map factors as a composition

Y
g→ Xα → E

for some α ∈ A. Let h′ denote the composite map Xα′ → X ′
g→ Xα and let h′ be defined similarly. Then

(α′, α, h) and (α′′, α, h) can be identified with elements of B. It follows that the composite maps

X → Xα′ →
⊕
α∈A

Xα → F

X → Xα′′ →
⊕
α∈A

Xα → F

both coincide with the map
X → Y

g→ Xα →
⊕
α∈A

Xα → F,

which proves that q is well-defined.
We now have a larger commutative diagram of fiber sequences

K //

��

⊕
α∈AXα //

��

E

��⊕
β∈B Yβ //

��

⊕
α∈AXα //

��

F

��
K //

⊕
α∈A

// E.

The right vertical composition induces the identity map on the underlying homology theory E∗: that is, it
differs from idE by a phantom map. In particular, it is an equivalence, so that the left vertical composition
is an equivalence of K with itself. It follows that K is a retract of

⊕
β∈B Yβ , which proves (∗).
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Even Periodic Cohomology Theories (Lecture 18)

April 27, 2010

Definition 1. Let R be a commutative ring and let L be an invertible R-module. An L-twisted formal
group law is a formal series

f(x, y) =
∑

ai,jx
iyj

where ai,j ∈ L⊗(i+j−1) which satisfies the identities

f(x, y) = f(y, x) f(x, 0) = x f(x, f(y, z)) = f(f(x, y), z).

When L = R, an L-twisted formal group law is the same thing as a formal group law over R. Every L-
twisted formal group law f(x, y) determines a formal group Gf . More precisely, f defines a group structure on
the functor Spf R[[L]] = Spf(

∏
n L⊗n) given by A 7→ HomR(L,

√
A), where

√
A denotes the ideal consisting

of nilpotent elements of A. Note that the fiber of the map

(Spf R[[L]])(R[ε/ε2])→ (Spf R[[L]])(R)

is the collection of R-linear maps L→ εR/ε2R: that is, it is the R-module L−1. In other words, if f is any
L-twisted formal group law, there is a canonical isomorphism ηf : gGf

' L−1, where gGf
denotes the Lie

algebra over Gf . Conversely, we have the following:

Lemma 2. Let R be a commutative ring and let G be a formal group over R with Lie algebra g. Then there
exists a g−1-twisted formal group law f and an isomorphism Gf ' G lifting the isomorphism ηf : gGf

' g.

Proof. We first suppose that G is coordinatizable. In particular, we can choose an isomorphism α : g ' R.
We also have an isomorphism β : G ' Gf for some formal group law f(x, y) ∈ R[[x, y]]. Replacing f by
λ−1f(λx, λy) for some invertible constant λ, we can ensure that the composite map

R
α' g

β
' Gf

ηf' R

is the identity.
Let G denote the affine R-scheme which carries every R-algebra A to the group of power series of the

form
g(t) = t+ b1t

2 + b2t
3 + · · ·

where bn ∈ L⊗n, and let P be the affine R-scheme which carries every R-algebra A to the collection of all
pairs (f, β), where f is an (L⊗RA)-twisted formal group law and β is an isomorphism of Gf ' G over SpecA
which lifts the isomorphism ηf . There is an obvious action of G on P , and the above argument shows that
P is a locally trivial G-torsor with respect to the Zariski topology. To prove the Lemma, we wish to show
that P (R) is trivial.

For each n ≥ 1, we let Gn denote the subgroup scheme of G consisting of those power series such that
bi = 0 for i ≤ n. Then P ' lim←−P/Gn, and P/G0 ' ∗. To prove that P (R) is nonempty, it will suffice to
show that each of the maps P/Gn(R)→ P/Gn−1(R) is surjective. The obstruction to surjectivity lies in the
group

H1(SpecR;Gn/Gn−1) ' H1(SpecR; L⊗n)

. This group is trivial, since L⊗n is a quasi-coherent sheaf on SpecR.
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Remark 3. Let R be a commutative ring and let L be an invertible R-module. The data of an L-twisted
formal group law over R is equivalent to the data of a graded formal group law over the ring

⊕
n∈Z L⊗n,

where L⊗n has degree 2n. That is, it is equivalent to giving a map of graded rings L→
⊕

n∈Z L⊗n.

Remark 4. Let f be an L-twisted formal group law over a commutative ring R. The following conditions
are equivalent:

(1) The associated formal group Gf is classified by a flat map q : SpecR→MFG.

(2) The graded L-module
⊕

L⊗n is Landweber-exact.

By Landweber’s theorem, condition (2) is equivalent to the sum
⊕

L⊗n being flat over MFG. In particular,
this implies that L⊗0 ' R is flat over MFG, so that (2) ⇒ (1). The converse follows from the observation
that

⊕
L⊗n is flat over R.

In the situation of Remark 4, we can apply Landweber’s theorem to obtain a spectrum ER, whose
underlying homology theory is given by (ER)∗(X) = MU∗(X)⊗L (

⊕
n L⊗n).

Example 5. Let R be the Lazard ring L and let L = R be trivial, so that
⊕

n L⊗n can be identified with
L[β±1]. Then the above construction applies to produce a spectrum EL whose homology theory is given by

(EL)∗(X) = MU∗(X)⊗L L[β±1] ' MU∗(X)[β±1].

This spectrum is called the periodic complex bordism spectra, and will be denoted by MP. Just as MU can
be realized as the Thom spectrum of the universal virtual complex bundle of rank 0 over BU , MP can be
realized as the Thom spectrum of the universal virtual complex bundle of arbitrary rank over the space
BU × Z. We have MP0(X) = MUeven(X).

Now suppose more generally, we are given a L-twisted formal group law f over a commutative ring R
satisfying the conditions of Remark 4. If we choose an isomorphism L ' R, then we can identify f with a
formal group law classified by a map L→ R, and

⊕
n L⊗n with the ring R[β±1]. Then the homology theory

ER is given by
(ER)∗(X) = MU∗(X)⊗L R[β±1] ' MP∗(X)⊗L R.

In particular, we have (ER)0(X) = MP0(X)⊗L R = MUeven(X)⊗L R.
The above calculation can be expressed in a more invariant way. Recall that to any spectrum X we

can associate a quasi-coherent sheaf FX on MFG, whose restriction to SpecL is given by MUevenX. Then
(MUevenX)⊗L R is the pullback of FX along the map q : SpecR→MFG. From this description, it is clear
that the homology theory (ER)∗ depends only on the formal group Gf (or equivalently, the map q), and not
on the particular choice of formal group law f . This calculation globalizes as follows:

Proposition 6. Let q : SpecR→MFG be a flat map. Then there exists a spectrum ER which is determined
up to canonical isomorphism (in the homotopy category of spectra) by its underlying homology theory, which
is given by (ER)0(X) = q∗ FX (so that, more generally, (ER)n(X) = (ER)0(Σ−nX) = q∗ FΣ−nX).

Remark 7. Suppose we have a commutative diagram

SpecR′

q′

$$IIIIIIIII
// SpecR

q
zzuuuuuuuuu

MFG

where q and q′ are flat: that is, we have a Landweber-exact formal group over R whose restriction along a
map of commutative rings R→ R′ is also Landweber-exact. Then we get an evident map ER → ER′ (which
is unique up to homotopy, by the results of the previous lecture).
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Proposition 8. Suppose we are given flat maps q : SpecR → MFG and q′ : SpecR′ → MFG. Then the
smash product ER ⊗ ER′ is homotopy equivalent to EB, where B fits into a pullback diagram

SpecB //

��

SpecR

��
SpecR′ // MFG .

Proof. It is clear that SpecB is flat over MFG. For simplicity, we will suppose that q and q′ classify formal
groups which admit coordinates, given by maps L→ R and L→ R′. Note that

MP0(MP) ' MUeven(MP) ' MU∗(MU)[b±1
0 ] ' MU∗[b±1

0 , b1, . . .].

Using this calculation, one sees that the diagram

Spec MP0 MU //

��

SpecL

��
SpecL // MFG

is a pullback square, so that B ' R⊗L MP0 MP⊗LR′.
Now let X be any spectrum. We have

(ER ⊗ ER′)0(X) ' (ER)0(ER′ ⊗X) (1)
' R⊗L MP0(ER′ ⊗X) (2)
' R⊗L (ER′)0(MP⊗X) (3)
' R⊗L MP0(MP⊗X)⊗L R′ (4)
' R⊗L (MP⊗MP)0X ⊗L R′. (5)

where (MP⊗MP)0X is the pullback of FX to Spec MP0 MP ' SpecL×MFG SpecL. It follows that (ER ⊗
ER′)0X is the pullback of FX to SpecB, thus giving a canonical homotopy equivalence ER⊗ER′ ' EB .

Corollary 9. For any flat map SpecR→MFG, there is a canonical multiplication ER⊗ER → ER, making
ER into a commutative and associative algebra in the homotopy category of spectra.

Proof. Form a pullback diagram
SpecB //

��

SpecR

��
SpecR // MFG .

There is an evident diagonal map SpecR→ SpecB. By Remark 7, this induces a map

ER ⊗ ER ' EB → ER.

The commutativity and associativity properties of this construction are evident.

Let q : SpecR → MFG be a flat map classifying a formal group with Lie algebra g, and let ER the
associated ring spectrum. By construction, we have

πnER '

{
gk if n = −2k
0 if n = −2k + 1.

Let us now axiomatize this structural phenomenon:
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Definition 10. Let E be a ring spectrum. We will say that E is even periodic if the following conditions
are satisfied:

(1) The homotopy groups πiE vanish when i is odd.

(2) The map π2E ⊗π0E π−2E → π0E is an isomorphism (so that, in particular, π2E is an invertible
E-module L, and we have π2nE ' L⊗n for all n).

If E is an even periodic ring spectrum, then E is automatically complex-orientable, so we obtain a formal
group G over π∗E. However, in the periodic case we can do better: since E∗(CP∞) ' E0(CP∞)⊗π0E π∗E,
we get a formal group Spf E0(CP∞) over the commutative ring R = π0E, whose restriction to π∗E is
the formal group we have been discussing earlier in this course. This formal group is classified by a map
q : SpecR→MFG.

We can summarize the situation as follows:

Proposition 11. Let C be the category of pairs (R, η), where R is a commutative ring and η : SpecR→MFG

is a flat map (that is, η corresponds to a Landweber-exact formal group over SpecR). Then the construction
R 7→ ER determines a fully faithful embedding Φ of C into the category of commutative algebras in the
homotopy category of spectra. A ring spectrum E belongs to the essential image of this embedding if and only
if E is even periodic, and the induced map π0E →MFG is flat.

To prove Proposition 11, we note that the construction E 7→ (π0E,Spf E0(CP∞)) provides a left inverse
to Φ. What is not entirely clear is that this construction is also right-inverse to Φ: that is, if E is an even
periodic ring spectrum which determines a map q : Specπ0E = SpecR→MFG, can we identify E with the
ring spectrum ER? Choose a complex orientation on E, given by a map of ring spectra MU → E which
induces a map of graded rings φ : L→ π∗E. Then the homology theory ER is given by

(ER)∗(X) = MU∗(X)⊗L (π∗E).

We get an evident map of homology theories (ER)∗(X)→ E∗(X). This map is an isomorphism by construc-
tion when X is a point. Since E is even and ER is Landweber exact, the results of the previous lecture show
that we get a map of spectra ER → E which is well-defined up to homotopy equivalence. This map induces
an isomorphism π∗ER → π∗E by construction, and is therefore an equivalence of spectra; it is easy to see
that this equivalence is compatible with the ring structures on ER and E.
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Morava Stabilizer Groups (Lecture 19)

March 24, 2010

Fix a prime number p and an integer 0 < n <∞. Our goal in this lecture is to understand the structure
of the moduli stack Mn

FG, whose R-points are formal groups of height exactly n over R.
Let Fp denote the algebraic closure of the field Fp. We have seen that there exists a formal group law

f(x, y) ∈ Fp[[x, y]] of height n, which is unique up to isomorphism. The map Spec Fp → Mn
FG is faithfully

flat: for any commutative ring R and any formal group law f ′(x, y) over R of height exactly n, we have a
pullback diagram

SpecR′ //

��

SpecR

��
Spec Fp

// Mn
FG

where R′ is a direct limit of finite etale extensions of R ⊗ Fp (and therefore faithfully flat over R). Conse-
quently, we can regard Fp as an atlas for Mn

FG. To understand Mn
FG, we form a pullback diagram

SpecB //

��

Spec Fp

��
Spec Fp

// Mn
FG .

The ring SpecB is a direct limit of finite etale extensions of Fp. Since Fp is an algebraically closed field,
each of these etale extensions is just a product of finitely many copies of Fp. Consequently, we can identify
SpecB (as a topological space) with an inverse limit of a tower of finite sets

· · · → X2 → X1 → X0.

We will denote this inverse limit by G. Unwinding the definitions, a point of G is given by an isomorphism
class of maps B → k, where k is an algebraic closure of Fp (noncanonically isomorphic to Fp. To give such
a map is equivalent to giving the following data:

(1) A pair of maps η, η′ : Fp → k.

(2) An isomorphism between the formal groups η(f) and η′(f) over k.

Since we are interested in classifying such data up to isomorphism, we may as well assume that k = Fp and
η′ is the identity. Then η is an an automorphism of Fp: that is, we can think of η as an element of the
Galois group Gal(Fp /Fp) ' Ẑ. The data of (2) is then an isomorphism of f with η(f), where η(f) denotes
the formal group law obtained by applying η to each coefficient in f . In other words, we can identify G with
the automorphism group Aut(Fp, f) of the pair Fp, f ∈ FGL(Fp). This group sits in an exact sequence

0→ Aut(f)→ Aut(Fp, f)→ Gal(Fp,Fp)→ 0,

where Aut(f) is the automorphism group of the formal group law f (keeping the field Fp fixed). The group
G = Aut(Fp, f) is called the Morava stabilizer group. We arrive at the following conclusion:
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Proposition 1. The moduli stack Mn
FG can be identified with the quotient (with respect to the flat topology)

(Spec Fp)/Aut(Fp, f), where Aut(Fp, f) acts via the map Aut(Fp, f)→ Gal(Fp /Fp).

To understand the stack Mn
FG better, we need to understand the group Aut(Fp, f). We begin by analyzing

the subgroup Aut(f). By definition, Aut(f) can be identified with the group of units in the ring End(f)
of endomorphisms of f : that is, elements of End(f) are power series g(t) ∈ Fp[[t]] such that gf(x, y) =
f(g(x), g(y)).

Let fp denote the formal group law over Fp obtained by applying the Frobenius map a 7→ ap to each
coefficient of f . Then fp is another formal group law of height n over Fp, so there exists a noncanonical
isomorphism ν of f with fp: that is, a power series ν satisfying νfp(x, y) = f(ν(x), ν(y)). Note that
f(x, y)p ' fp(xp, yp), so that

νf(x, y)p = νfp(xp, yp) = f(ν(xp), ν(yp)).

Consequently, we deduce that the power series π(t) = ν(tp) is an endomorphism of f , and belongs to the
ring End(f).

Let g ∈ End(f) be arbitrary, and write g(t) = b0t+ b1t
2 + . . . If b0 6= 0, then g is invertible and belongs

to Aut(f). Otherwise, we have seen that g(t) = g0(tp) for some uniquely defined power series g0, and that
g0 is an endomorphism of the formal group law fp. Then g0 ◦ ν−1 is an endomorphism of f , and we have
g = g0 ◦ ν−1 ◦ ν ◦ (t 7→ tp) = (g0 ◦ ν−1)π. In other words:

Proposition 2. Every non-invertible element g of the ring End(f) can be written uniquely in the form g′π,
where π(t) = ν(tp) is the endomorphism defined above. In particular, End(f) is a (noncommutative) local
ring: the collection of non-invertible elements of End(f) is a two-sided ideal, which is the left ideal generated
by π.

More generally, we saw in lecture 12 that every nonzero endomorphism g of f can be written uniquely in
the form uπk for some k ≥ 0; here k is the smallest integer for which the coefficient of tp

k

in g(t) is nonzero.
We will refer to k as the valuation of g and write k = v(g). By convention we set v(0) = ∞. Note that
v(gg′) = v(g) + v(g′). In particular, v(p) = n where n is the height of f (this is the definition of height).

Remark 3. There is an evident ring homomorphism λ : End(f) 7→ Fp given by differentiation: more
precisely, λ carries g(t) = b0t + b1t

2 + . . . to the element b0 ∈ Fp. The kernel of λ is the collection of
noninvertible power series: that is, the ideal End(f)π. Since the p-series for f is given by [p](t) = µtp

n

+ · · ·
for some µ, any endomorphism g of f satisfies g([p](t)) = [p](g(t)), so that

b0µt
pn

+ · · · = bp
n

0 µtp
n

+ · · · .

It follows that the image of λ is contained in the subfield Fpn ⊆ Fp. Conversely, in Lecture 14 we showed
that any solution to the equation b0 = bp

n

0 can be extended to an automorphism of f : that is, the map
λ : End(f)→ Fpn is surjective.

Remark 4. Since an endomorphism g(t) of f is determined knowing all of its reductions modulo tp
k

,
we deduce that End(f) ' lim←−(End(f)/End(f)πk). Each of the quotients End(f)/End(f)πk has finite
cardinality pnk, so this inverse limit exhibits End(f) as a profinite set. The induced topology on the closed
subset Aut(f) agrees with Zariski topology on SpecB = Aut(Fp, k).

We have a canonical map

Zp ' lim←−Z/pkZ→ lim←−End(f)/End(f)πk ' End(f)

whose image is central in End(f).

In other words, we can think of End(f) as a noncommutative discrete valuation ring, having commutative
residue field Fpn . Let D = End(f)[p−1]. Since p = uπn for some invertible constant u, π is invertible in D,
so that D is a division algebra over Zp[p−1] ' Qp. The valuation v extends to D formally by the formula
v( λ
pk ) = v(λ)− nk.
Note that p is not a zero-divisor in End(f), so that End(f) can be identified with a subset of D.
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Lemma 5. We have End(f) = {x ∈ D : v(x) ≥ 0}.

Proof. It is clear that v(x) ≥ 0 if x ∈ End(f). Conversely, suppose that x = λ
pk for some λ ∈ End(f). If

v(x) ≥ 0, then v(λ) ≥ nk so that λ = λ′πnk. It will therefore suffice to show that πnk

pk ∈ End(f). Since
End(f) is closed under products, it suffices to show that πn

p ∈ End(f). This is clear, since v(p) = n implies
that p = uπn for some invertible u ∈ End(f).

Lemma 6. As a vector space over Qp, D has dimension n2.

Proof. Let {xi}0≤i<n be a basis for Fpn over Fp. Choose elements xi ∈ End(f) with λ(xi) = xi. Then the
elements {πjxi}0≤i,j<n form a basis for D over Qp.

To identify D further, we note that conjugation by any g ∈ D× is an automorphism of D which preserves
End(f) ⊆ D and therefore acts on the quotient End(f)/π.

Lemma 7. Let g ∈ D. The conjugation action of g on End(f)/π ' Fpn is given by b 7→ bp
v(g)

.

Proof. Without loss of generality we may assume that g ∈ End(f), so that g(t) = λtp
v(g)

for some λ 6= 0.
Fix b ∈ Fpn , and let h ∈ End(f) be a power series given by h(t) = b0t + · · · . Let h′(t) = (g ◦ h ◦ g−1)(t) =
b′t+ · · · ∈ End(f). The equation g ◦ h = h′ ◦ g gives

λbp
v(g)

tp
v(g)

+ · · · = b′λtp
v(g)

+ · · ·

so that b′ = bp
v(g)

.

Lemma 8. The center of D is Qp.

Proof. Let g be in the center of D; we wish to prove that g ∈ Qp. Multiplying by a power of p if necessary,
we may assume that g ∈ End(f); we wish to prove that g ∈ Zp. Since Zp is closed in End(f), it will suffice
to show that there exists an integer m such that g ≡ m mod pk for all k. We work by induction on k. Since
πgπ−1 = g, Lemma 7 implies that the reduction of g moduli π belongs to Fp ⊆ Fpn . Subtracting an integer
from g, we may suppose that v(g) > 0. Lemma 7 implies that v(g) is divisible by n, so that v(g) ≥ n and
therefore g = g′p for some g′ belonging to the center of End(f). Then g′ is congruent to an integer modulo
pk−1 by the inductive hypothesis, so that g is congruent to an integer modulo pk.

Remark 9. It follows from the above analysis that the division algebra D can be identified with an element
of the Brauer group Br(Qp). There is a canonical isomorphism µ : Br(Qp) ' Q /Z, which is defined as
follows. Every Brauer class over Qp is represented by a central division algebra D′ over Qp, which contains
a ring of integers O and maximal ideal m. There is a valuation v : D′ − {0} → Z with O = v−1Z≥0 and
m = v−1Z≥1. Conjugation induces a surjective homomorphism D′ − {0} → Gal((O /m)/Fp). In particular,
the Frobenius map x 7→ xp on the residue field O /m is given by conjugation by x, for some x ∈ D′. Then
µ(D′) = v(x)

v(p) (modulo Z, this invariant does not depend on the choice of x).
In the case D = D′, we can take x = π, so that D is the unique central division algebra over Qp with

µ(D) = 1
n .

By construction, there is a canonical isomorphism End(f)× ' Aut(f). In fact, we can extend this to a
map χ : D× → Aut(Fp, f). Here χ is defined on End(f)− {0} by carrying a nonzero endomorphism g(t) of
f to the pair (F v(g), g0), where F v(g) is a power of the Frobenius automorphism x 7→ xp of Fp, and g0 is the
isomorphism of f with fp

v(g)
characterized by the formula g(t) = g0(tp

v(g)
).

We have a commutative diagram of exact sequences

0 // End(f)× //

��

D×
v //

��

Z //

��

0

0 // Aut(f) // Aut(Fp, f) // Gal(Fp,Fp) // 0.
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The left vertical map is an isomorphism, and the right vertical map is almost an isomorphism (the group
Gal(Fp,Fp) is the profinite completion Ẑ of the Z). Consequently, the Morava stabilizer group is almost the
group of units in the division algebra D× (they differ by a completion procedure).

We can use the above picture to study the problem of descending the formal group law defined by f to a
finite field Fpk ⊆ Fp. By descent theory, this is equivalent to giving an action of Gal(Fp /Fpk) ' kẐ on the
formal group, compatible with the action of kẐ on Fp itself. In other words, we need to give a splitting of the
projection map Aut(Fp, f) → Gal(Fp /Fp) over the subgroup kẐ ⊆ Gal(Fp /Fp). Since kẐ is topologically
cyclic, this is equivalent to giving a single element of Aut(Fp, f) lying over the integer k: that is, giving an
element of x ∈ D× with v(x) = k.

Such an element exists for every integer k ≥ 1. However, when k = 1 there is a canonical choice x = p,
which belongs to the center of D. Unwinding the definitions, this proves the following:

Proposition 10. The formal group of height n over Fp has a canonical form over the finite field Fpn . This
formal group over Fpn has the property that every endomorphism (and, in particular, every automorphism)
is defined over Fpn .

It follows that the moduli stack Mn
FG can also be identified with the quotient Spec Fpn/G′, where G′ '

D×/pZ fits into an exact sequence

0→ End(f)× → G′ → Z/nZ→ 0.

The group G′ is also sometimes called the Morava stabilizer group.
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Bousfield Localization (Lecture 20)

April 27, 2010

Let C be a full subcategory of the category Sp of spectra, which is closed under shifts and homotopy
colimits and satisfies the following technical condition:

(∗) There exists a small subcategory C0 ⊆ C which generates C under homotopy colimits.

In this case, the inclusion C ⊆ Sp preserves homotopy colimits; using a version of the adjoint functor
theorem one deduces that this inclusion admits a right adjoint G (at the level of homotopy categories). We
can think of G as a functor from Sp to itself, which takes values in C.

Remark 1. Roughly speaking, if X is a spectrum then we want to define G(X) to be the homotopy colimit
of all objects Y ∈ C with a map to X. Condition (∗) is used to make this homotopy colimit sensible (that
is, to replace it by a homotopy colimit indexed by a small category).

For every spectrum X, we have a counit map v : G(X) → X. We let L(X) denote the cofiber of v, so
that we have a cofiber sequence

G(X)→ X → L(X).

By construction, for every object Y ∈ C, the map of function spectra G(X)Y → XY is a homotopy equiva-
lence; it follows that L(X)Y ' 0.

Definition 2. A spectrum X is C-local if every map Y → X is nullhomotopic when Y ∈ C. We denote the
category of C-local spectra by C⊥.

Remark 3. The full subcategory C⊥ ⊆ Sp is stable under shifts and homotopy limits.

The above analysis shows that for every X, the spectrum L(X) is C-local. Moreover, for every C-local
spectrum Z, we have ZG(X) ' 0, so that the map ZL(X) → ZX is a homotopy equivalence. It follows that
L can be viewed as a left adjoint to the inclusion C⊥ ⊆ Sp.

Example 4 (Bousfield). Fix a spectrum E. We say that another spectrum X is E-acyclic if the smash
product X ⊗ E is zero. The collection CE of E-acyclic spectra is clearly stable under shifts and homotopy
colimits, and one can show that it satisfies (∗). We say that a spectrum X is E-local if every map Y → X
is nullhomotopic whenever Y is E-acyclic. The above analysis shows that every spectrum X sits in an
essentially unique cofiber sequence

GE(X)→ X → LE(X)

where G(X) is E-acyclic and LE(X) is E-local. The functor LE is called Bousfield localization with respect
to E. The map X → LE(X) is characterized up to equivalence by two properties:

(a) The spectrum LE(X) is E-local.

(b) The map X → LE(X) is an E-equivalence: that is, it induces an isomorphism on E-homology groups
E∗(X) ' E∗LE(X).
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Example 5. Let E be a ring spectrum. If X is an E-module spectrum, then X is E-local. Indeed, suppose
that Y is E-acyclic and we are given a map f : Y → X. Then f can be written as the composition

Y
f→ X → E ⊗X → X.

The composition of the first pair of morphisms factors as a composition

Y → E ⊗ Y id⊗f→ E ⊗X,

and is therefore nullhomotopic since E ⊗ Y ' 0.

Remark 6. Let E be an A∞-ring spectrum and X an arbitrary spectrum, and let X• be the cosimplicial
spectrum given by Xn = E⊗n+1 ⊗X. Each Xn is E-local, so the totalization lim←−X

• of X• is E-local. It
follows that the canonical map X → lim←−X

• factors through a map α : LEX → lim←−X
•. In many cases, one

can show that α is a homotopy equivalence: that is, the cosimplicial object X• is a means of computing the
E-localization of X.

Example 7. Let E be the Eilenberg-MacLane spectrum H Q. Then a spectrum X is E-acyclic if and only
if the homotopy groups π∗X consist entirely of torsion. A spectrum X is E-local if and only if the homotopy
groups π∗X are rational vector spaces.

Example 8. The theory of Bousfield localization works in a very general context. For example, rather than
working with spectra, we can work with chain complexes of abelian groups. Fix a prime number p. We
say that a projective chain complex A• is Z/pZ-acyclic if A• ⊗ Z/pZ is nullhomotopic: equivalently, A• is
Z/pZ-acyclic if each homology group Hn(A•) is a Z[ 1p ]-module. We say that A• is Z/pZ-local if every map
from a projective Z/pZ-acyclic chain complex into A• is nullhomotopic.

For any projective chain complex A•, we define its completion Â• to be the homotopy limit

lim←−
n

A• ⊗ Z/pnZ.

As a homotopy limit of Z/pZ-local chain complexes, we conclude that Â• is Z/pZ-local. On the other hand,
a simple calculation shows that the map A• → Â• induces a quasi-isomorphism modulo p, so that Â• can
be identified with the Z/pZ-localization of A•.

In general, it is good to think of Bousfield localization as involving a mix of Examples 7 and 8. In
algebro-geometric terms, it can behave sometimes like restriction to an open subscheme (as in Example 7)
and sometimes like completion along a closed subscheme (Example 8). Our next goal is to describe Bousfield
localizations of the first type more precisely.

Lemma 9. Let C, C⊥, G, and L be as above. The following conditions are equivalent:

(1) The subcategory C⊥ ⊆ Sp is stable under homotopy colimits.

(2) The functor L preserves homotopy colimits.

(3) The functor G preserves homotopy colimits.

(4) The functor L has the form L(X) = K ⊗X for some spectrum K.

Proof. We first prove (1)⇒ (2). Assume C⊥ is stable under homotopy colimits. For any diagram of spectra
{Xα}, we have canonical maps

lim−→Xα
γ→ lim−→L(Xα)

β→ L lim−→Xα.

The fiber of γ belongs to C (since C is stable under homotopy colimits), and lim−→L(Xα) ∈ C⊥ by (1). It
follows that β is an equivalence.
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To prove that (2)⇒ (1), we note that if {Xα} is a diagram in C⊥, then L(lim−→Xα) ' lim−→L(Xα) ' lim−→Xα

so that lim−→Xα ∈ C⊥.
The equivalence of (2) and (3) follows from the cofiber sequence of functors

G→ id→ L.

Finally, the equivalence of (2) and (4) follows from from the following observation: every functor F : Sp→ Sp
which preserves homotopy colimits has the form F (X) ' K ⊗X, for some spectrum K.

We say that a Bousfield localization L is smashing if it satisfies the equivalent conditions of Lemma 9.

Remark 10. In the situation of Lemma 9, the spectrum K can be recovered as the image L(S) of the sphere
spectrum S under the localization functor L.

Remark 11. Let C ⊆ Sp be a subcategory satisfying the conditions of Lemma 9. Then a spectrum X
belongs to C if and only if L(X) = L(S)⊗X ' 0. In other words, C can be identified with the collection of
L(S)-acyclic spectra, so that L = LE for E = L(S).

Example 12. Let C ⊆ Sp be a subcategory which is stable under shifts and homotopy colimits, which is
generated under homotopy colimits by a subcategory C0 ⊆ C consisting of finite spectra. Then it is easy to
see that C satisfies condition (1) of Lemma 9, so that C determines a smashing localization functor.
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Lubin-Tate Theory (Lecture 21)

April 27, 2010

We have seen that the moduli stack MFG of formal groups admits a stratification. The open strata are
locally closed substacks Mn

FG ⊆ Mn
FG classifying formal groups of height exactly n (at some fixed prime

p). These strata are relatively well understood: for 0 < n < ∞, the stratum Mn
FG can be identified with

a quotient Spec Fpp /G, where G is a certain profinite group (the Morava stabilizer group). To understand
the moduli stack MFG itself, we want to know how these strata fit together. In other words, we would like
to understand what MFG looks like in a small neighborhood of some point of Mn

FG. This is the subject of
Lubin-Tate theory.

Let us fix a perfect field k of characteristic p and a formal group law f(x, y) ∈ k[[x, y]] of height n over
k. We would like to understand formal group which are, in some sense, “close” to f .

Definition 1. An infinitesimal thickening of k is a commutative ring A with a surjective map φ : A → k
whose kernel mA = ker(φ) has the following properties:

(1) The ideal ma
A = 0 for a� 0.

(2) Each quotient ma
A/m

a+1
A is a finite-dimensional vector space over k.

In other words, A is a local Artin ring having residue field k.

Definition 2. Let A be an infinitesimal thickening of k. A deformation of f over A is a formal group law
fA over A, whose image under the map FGL(A) → FGL(k) is f . We say that two deformations of f are
isomorphic if they differ by an invertible power series g(t) ∈ A[[t]] such that g(t) ≡ t mod mA. We will
denote the collection of isomorphism classes of deformations of f over A by Def(A).

Remark 3. A priori, we expect that deformations of a formal group law f over A should form a groupoid.
However, this groupoid is actually discrete. In other words, if fA is a deformation of f over A, then any
automorphism of fA which is the identity modulo mA is automatically trivial. To prove this, we can replace
f by the image of fA in FGL(k) and thereby reduce to the case η = id. Let g(x) = b0x + b1x

2 + · · · be
an automorphism of the formal group law fA. We will prove by induction on a that g(x) ≡ x mod ma

A.
When a = 1, this is true by hypothesis; for a sufficiently large, we have ma

A = 0 so that we will have proven
g(x) = x. To complete the proof, we carry out the inductive step. Let A′ be the quotient of A[b±1

0 , b1, . . .]
which classifies automorphisms of fA. The map g is classified by a ring homomorphism ψ : A′ → A, while
the identity automorphism is classified by ψ0 : A′ → A. Assume that the composite maps

ψ,ψ′ : A′ → A→ A/ma
A

agree. Then, modulo ma+1
A , the difference ψ − ψ′ is a map d : A′ → V , where V is the k-vector space

ma
A/m

a+1
A . The map d is an A-linear derivation, and factors as a composition

A′ → A′ ⊗A k
d′

→ V

where d′ is a k-linear derivation. But A′ ⊗A k is the ring classifying automorphisms of the formal group f
of height n, and is therefore etale over k: it follows that d′ = 0 so that ψ ≡ ψ′ mod ma+1

A .
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Remark 4. The set Def(A) can be identified with the set of isomorphism classes of formal groups F over
A lifting the formal group Gf associated to f . To see this, we note that since A is local the formal group
F automatically has the form Ff ′ for some f ′ ∈ FGL(A). By assumption, the image f ′k of f ′ in FGL(k) is
isomorphic to f , via some invertible power series g(t) ∈ k[[t]]. Lifting the coefficients of g arbitrarily, we can
assume that g is the image of a power series g(t) ∈ A[[t]] (automatically invertible). Conjugating f ′ by g,
we obtain the desired deformation of f .

We would like to understand the deformation functor A 7→ Def(A). We begin by writing down a specific
deformation of f . Let W (k) denote the ring of Witt vectors of k, and let R = W (k)[[v1, . . . , vn−1]]. There
is a canonical map R → k, whose kernel is the maximal ideal mR = (p, v1, . . . , vn−1). The formal group f
over k is classified by a map φ0 : L(p) → k, where L(p) ' Z(p)[t1, t2, . . .]. We may assume without loss of
generality that tpi−1 = vi for 1 ≤ i ≤ n − 1. Since f has height n, we conclude that tpi−1 7→ 0 ∈ k for
1 ≤ i ≤ n− 1. Let φ : L(p) → R be any homomorphism which lifts φ0, and carries tpi−1 to vi for 0 < i < m.
This homomorphism determines a formal group law f ∈ FGL(R) whose image in FGL(k) is f .

Theorem 5 (Lubin-Tate). The formal group law f over R = W (k)[[v1, . . . , vn−1]] is a universal deformation
of f in the following sense: for every infinitesimal thickening A of k, f gives a bijection

Hom/k(R,A)→ Def(A).

The proof rests on the following pair of observations:

(1) The functor A 7→ Def(A) is formally smooth: that is, if A→ A′ is a surjective map between infinitesimal
thickenings of k, then the induced map Def(A) → Def(A′) is surjective (this is because any formal
group law over A′ extends to a formal group law over A, since the Lazard ring L is polynomial).

(2) Given a pair of surjective maps A→ B ← C between infinitesimal thickenings of k, the canonical map
Def(A×B C)→ Def(A)×Def(B) Def(C) is a bijection. To see this, it is best to think in terms of formal
groups (Remark 4): Spec(A×B C) is obtained by gluing SpecA and SpecC along the common closed
subscheme SpecB, so giving a formal group over Spec(A×B C) is equivalent to giving a formal groups
over SpecA and SpecC, together with an isomorphism between their restrictions to SpecB.

To prove Theorem 5 we work by induction on the length of the Artinian ring A. If A has length 1, then
A ' k and both Hom/k(R,A) and Def(A) consist of a single element. If A has length > 1, then we can
choose an element x ∈ A which is annihilated by mA. Let us study the relationship between Def(A) and
Def(A/x). Using (2), we have a pullback diagram

Def(A×A/x A) //

��

Def(A)

p

��
Def(A) // Def(A/x).

Note that A×A/x A ' k[x]/(x2)×k A. There is an addition map

k[x]/(x2)×k k[x]/(x2)→ k[x]/(x2)

which, by (2), determines a group structure on Def(k[x]/(x2)). The multiplication

k[x]/(x2)×k A→ A

determines an action of Def(k[x]/(x2)) on Def(A), and the pullback square above shows that p determines
an embedding Def(A)/Def(k[x]/(x2)) ↪→ Def(A/x). It follows from (1) that this map is surjective: that is,
Def(A) is a principal homogeneous space for Def(k[x]/(x2)) over Def(A/x). The same reasoning shows that
Hom/k(R,A) is a torsor for Hom/k(R, k[x]/(x2)) over Hom/k(R,A/x). Since Hom/k(R,A/x) ' Def(A/x)
by the inductive hypothesis, we are reduced to proving the following special case of Theorem 5:
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Lemma 6. The canonical map θ : Hom/k(R, k[x]/(x2))→ Def(k[x]/(x2)) is bijective.

To prove this, we construct a map θ′ : Def(k[x]/(x2)) → kn−1 as follows. Every deformation f ′ is
classified by a map φ from the Lazard ring L into k[x]/(x2) and we have φ(vi) = cix for 0 < i < n. Set
θ′(φ) = (c1, c2, . . . , cn−1).

Claim 7. The sequence (c1, c2, . . . , cn−1) depends only on the isomorphism class of the deformation φ.

To see this, let us suppose that f ′ and f ′′ are deformations of the formal group law f over k[x]/(x2)
which differ by an autommorphism g(t) = (1 + b0x)t + b1xt

2 + b2xt
3 + · · · . These formal group laws have

p-series which we will denote by [p]′(t) and [p]′′(t), which are related by the formula

g([p]′(g−1(t))) = [p]′′(t).

Since f has height ≥ n, the power series [p]′(t) and [p]′′(t) are divisible by x modulo tp
n

. Since x2 = 0 and
g(t) ≡ t mod (x), we deduce that [p]′(t) ≡ [p]′′(t) mod (tp

n

), thereby proving the claim.
It is not hard to see that θ′ is a group homomorphism. Moreover, the composition

Hom/k(R, k[x]/(x2)) θ→ Def(k[x]/(x2)) θ′→ kn−1

is an isomorphism by construction. This proves that θ is injective. To prove that θ is surjective, it will suffice
to show that θ′ is injective. A deformation f ′ of f belongs to the kernel of θ′ if and only if θ′ has height
exactly n. Let f ′′ be the trivial deformation of f ; we wish to show that there is an isomorphism of f ′ with
f ′′ which reduces to the identity modulo x.

Since f ′ and f ′′ are formal groups of height exactly n over k[x]/(x2), the collection of isomorphisms of f ′

and f ′′ is classified by a k[x]/(x2)-algebra R which is an inductive limit of finite etale extensions of k[x]/(x2).
It follows that k[x]/(x2)-algebra homomorphism R→ k lifts uniquely to a k[x]/(x2)-algebra homomorphism
R → k[x]/(x2): in particular, the identity automorphism f extends uniquely to an isomorphism of f with
f ′. This completes the proof of Theorem 5.

Remark 8. Let A be a complete Noetherian local ring with residue field k and maximal ideal mA. Then
each A/ma

A is an infinitesimal thickening of k, and A ' lim←−A/m
a
A. It follows that Theorem 5 is also true

for A: giving a deformation of the formal group f over A is equivalent to giving a ring homomorphism
W (k)[[v1, . . . , vn−1]]→ A which is the identity on the common residue field k.

In particular, we see that W (k)[[v1, . . . , vn−1]] is characterized uniquely by Theorem 5. As such, it
depends functorially on the residue field k together with the choice of formal group of height n over k.

In particular, if we take k = Fp, then the Morava stabilizer group G acts on W (Fp)[[v1, . . . , vn−1]].

Remark 9. Let k and R = W (k)[[v1, . . . , vn−1]] be as above. Then the formal group law over R is Landwe-
ber exact: the sequence v0 = p, v1, . . . , vn−1 is regular by construction, and vn has invertible image in
R/(v0, v1, . . . , vn−1) ' k by virtue of our assumption that the original formal group law f has height n.

Using results of previous lectures, we can construct an even periodic spectrum E(n) with π∗E(n) '
W (k)[[v1, . . . , vn−1]][β±1], where β has degree 2. The cohomology theory E(n) (which really depends not
only on n, but on a choice of field k and a formal group of height n over k) is called Morava E-theory. It is
also sometimes called Lubin-Tate theory or completed Johnson-Wilson theory.
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Morava E-Theory and Morava K-Theory (Lecture 22)

April 27, 2010

Let k be a perfect field of characteristic p, and suppose we are given a formal group law f of height
n over k. In the last lecture, we saw that the universal deformation of f is classified by the Lubin-Tate
ring R = W (k)[[v1, . . . , vn−1]. We note that this deformation of f over R is Landweber-exact: the sequence
v0 = p, v1, . . . , vn−1 is regular by construction, and vn has invertible image in R/(v0, v1, . . . , vn−1) ' k by
virtue of our assumption that the original formal group law f has height n.

Using results of previous lectures, we can construct an even periodic spectrum E(n) with π∗E(n) '
W (k)[[v1, . . . , vn−1]][β±1], where β has degree 2. The cohomology theory E(n) (which really depends not
only on n, but on a choice of field k and a formal group of height n over k) is called Morava E-theory. It is
also sometimes called Lubin-Tate theory or completed Johnson-Wilson theory.

Associated to E(n) is a Bousfield localization functor LE(n). Note that a spectrum X satisfies LE(n)X = 0
if and only if X is E(n)-acyclic: that is, the homology groups E(n)∗(X) ' MP∗(X) ⊗L R vanish. We can
associate to X a quasi-coherent sheaf FX on MFG×Spec Z(p). The vanishing of E(n)∗(X) is equivalent to
the requirement that both FX and FΣ(X) (and therefore FΣkX for every integer k) are supported on the
closed substack M

≥n+1
FG ⊆ MFG×Spec Z(p). This is one sense in which LE(n) “behaves like” restriction to

the open substack M
≤n
FG ⊆ MFG×Spec Z(p). This suggests that LE(n) should be a smashing localization.

This is indeed the case:

Theorem 1 (Smash Product Theorem). The localization LE(n) is smashing: that is, it preserves direct
sums.

We will prove Theorem 1 later in this course.
Our next goal is to introduce a homotopy theoretic counterpart to the mechanism of restricting to the

closed substack Mn
FG ⊆ M

≤n
FG. This is more subtle, since Mn

FG is not flat over MFG, so we cannot proceed
via Landweber’s theorem.

Fix a prime p, and consider the p-local complex bordism spectrum MU(p). This complex bordism spec-
trum has the structure of an E∞-ring. In particular, there is a good theory of (structured) MU(p)-modules,
and a relative smash product (M,N) 7→M ⊗MU(p) N .

We have π∗MU(p) ' L(p) ' Z(p)[t1, t2, . . .], where we may assume that vi = tp
i−1 for each i > 0. By

convention, we set t0 = p ∈ π0 MU(p).
For each integer k, let M(k) denote the cofiber of the map Σ2k MU(p) → MU(p) given by multiplication

by tk.

Lemma 2. Each M(k) admits a unital and homotopy associative multiplication (in the category of MU(p)-
module spectra).

Proof. We fix the unit of M(k) to be the evident map u : MU(p) →M(k). The smash product M(k)⊗MU(p)

1



M(k) can be realized as the total homotopy cofiber of the commutative diagram

Σ4k MU(p)
tk //

tk

��

Σ2k MU(p)

tk

��
Σ2k MU(p)

tk // MU(p) .

We let K denote the total cofiber of an analogous diagram, where we replace the upper left hand corner
with the zero spectrum. In other words, K is the cofiber of the map

(Σ2kM(k))2 (tk,tk)→ M(k).

There is an evident map α : K → M(k). To define an MU(p)-linear multiplication on M(k) (having u as a
unit) is equivalent to factoring u as a composition

K
β→M(k)⊗MU(p) M(k)

γ→M(k)

in the setting of MU(p)-modules.
To produce such a factorization, it suffices to show that the composition

ker(β)→ K
α→M(k)

is nullhomotopic. Note that ker(β) can be identified with the desuspension of the total cofiber of the square

Σ4kM(k) //

��

0

��
0 // 0;

that is, we have ker(β) ' Σ4k+1M(k), and the relevant obstruction lives in π4k+1M(k) ' (Lp/tk)4k+1 ' 0.
We now show that the multiplication γ is homotopy associative (in the setting of MU(p)-modules). We

have two natural multiplication maps

f, g : X = M(k)⊗MU(p) M(k)⊗MU(p) M(k)→M(k).

We wish to prove that the difference f − g is nullhomotopic. Note that X can be described as the total
cofiber of a cube

Σ6k MU(p)
//

&&MMMMMMMMMM

��

Σ4k MU(p)

��

&&MMMMMMMMMM

Σ4k MU(p)
//

��

Σ2k MU(p)

��

Σ4k MU(p)
//

&&MMMMMMMMMM
Σ2k MU(p)

&&MMMMMMMMMMM

Σ2k MU(p)
// MU(p) .

Let Y be the total cofiber of an analogous diagram obtained by replacing the upper left corner by zero. By
construction, the difference f − g is nullhomotopic on Y , so that f − g factors as a composition

X → X/Y ' Σ6k+3 MU(p) →M(k).

Since π6k+3M(k) ' (L(p)/tk)6k+3 ' 0, the second map is nullhomotopic so that f ' g as desired.
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Remark 3. The multiplication on M(k) constructed above is not unique: the same argument shows that
the collection of such multiplications forms a torsor P for the group π4k+2M(k).

The torsor P has a canonical action of the permutation group Σ2 (which acts on the smash product
M(k)⊗MU(p) M(k). If p 6= 2, then H1(Σ2;π2k+2M(k)) ' 0 so that P has a Σ2-fixed point. This means that
we can choose the multiplication on M(k) to be homotopy commutative when p 6= 2.

Remark 4. By continuing the analysis of Lemma 2, one can show that M(k) admits the structure of an
A∞-algebra over MU(p).

Definition 5. Fix a prime number p and an integer n > 0. We let K(n) denote the smash product (over
MU(p)) of MU(p)[v−1

n ] with
⊗

k 6=pn−1M(k). The spectrum K(n) is called Morava K-theory.

Using Lemma 2, we see that K(n) has the structure of a homotopy associative MU(p)-algebra; if p 6= 2,
we can even assume that K is homotopy commutative.

A simple calculation shows that the homotopy groups of K(n) are given by

π∗K(n) ' (π∗MU(p))[v−1
n ]/(t0, t1, . . . , tpn−2, tpn , . . .) ' Fp[v±1

n ],

where vn has degree 2(pn − 1).
We have a map of ring spectrum MU(p) → K(n), giving a complex orientation on K(n). This determines

a formal group law over the ring π∗K(n) ' Fp[v±1
n ], which has height exactly n.

Warning 6. When p = 2, the Morava K-theory spectra generally do not admit homotopy commutative ring
structures. Nevertheless, the theory of complex orientations makes sense in this setting: though K(n) itself
is not homotopy commutative, the cohomology rings K(n)∗(X) are commutative for many important spaces
(like CP∞, BU(n), and so forth) since they are given by MU∗(X)⊗L Fp[v±1

n ].

Warning 7. Our construction of the ring spectra M(k) (and therefore the Morava K-theories K(n) ) involve
a number of arbitrary choices. We will later see that, as a spectrum, K(n) does not depend on these choices.

We let LK(n) denote the localization with respect to the Morava K-theory K(n). We will later see that
LK(n) behaves like completion along the locally closed substack Mn

FG ⊆MFG.
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The Bousfield Classes of E(n) and K(n) (Lecture 23)

April 27, 2010

Let E and E′ be homology theories. We say that E and E′ are Bousfield equivalent if, for every spec-
trum X, the homology groups E∗(X) vanish if and only if the homology groups E′∗(X) vanish. Bousfield
equivalence is an equivalence relation on spectra, and the equivalence classes are called Bousfield classes.

Example 1. Let E be a p-local complex oriented cohomology theory and suppose that the associated map
Specπ∗E → MFG×Spec Z(p) is a flat covering of the open substack M

≤n
FG. Then E is Bousfield equivalent

to Morava E-theory E(n). Indeed, for every spectrum X, the vanishing of E∗(X) is equivalent to the
requirement that, for each k, the localization (FΣk)(p) of the quasi-coherent sheaf FΣkX on MFG is supported
on the closed substack M

≥n+1
FG , which (by the same argument) is equivalent to the vanishing of E(n)∗(X).

Let p be a prime number and an integer n > 0. Our main goal is to prove the following:

Proposition 2. The spectrum E(n) is Bousfield equivalent to E(n−1)×K(n). Here we agree by convention
that E(0) ' HQ[β±1], which is Bousfield equivalent to HQ.

In other words, we claim that a spectrum X is E(n)-acyclic if and only if it is both E(n − 1)-acyclic
and K(n)-acyclic. To prove this, it will be convenient to replace introduce a different representative for the
Bousfield class of E(n).

Construction 3. Recall that there exists an isomorphism π∗MU(p) ' L(p) ' Z(p)[t1, t2, . . .] with tpn−1 = vn

for n > 0, and by convention we have t0 = v0 = p. For each k ≥ 0, we let M(k) denote the cofiber of the
map tk : Σ2k MU(p) → MU(p). In the last lecture, we saw that M(k) admits the structure of a homotopy
associative algebra in the category of MU(p)-modules.

For m ≤ n, we let Z(m) denote the smash product (over MU(p)) of MUp[v−1
n ] with M(k), where k ranges

over all nonnegative integers not of the form pm′ − 1 for m ≤ m′ ≤ n.
By construction, Z(m) is a complex-oriented ring spectrum with π∗Z(m) = Zp[v1, . . . , vn−1, v

±1
n ]/(v0, v1, . . . , vm−1).

We have Z(n) ' K(n), and Example 1 shows that Z(0) is Bousfield equivalent to E(n).

Let us now prove Proposition 2. Suppose first that X is an E(n)-acyclic spectrum. Then each (FΣkX)(p)

is supported on the closed substack M
≥n+1
FG ⊆MFG. Since M

≥n+1
FG ⊆M

≥n
FG, we deduce immediately that X is

E(n−1)-local. Since Z(0) is Bousfield equivalent to E(n), we have X⊗Z(0) ' 0. Since X⊗K(n) ' X⊗Z(n)
is obtained from X ⊗ Z(0) by smashing (over MU(p)) with M(pk − 1) for 0 ≤ k < n, we conclude that
X ⊗K(n) ' 0: that is, X is K(n)-acyclic.

Now suppose that X is K(n)-acyclic and E(n − 1)-acyclic; we wish to prove that X is E(n)-acyclic. It
will suffice to show that X is Z(0)-acyclic. We prove by descending induction on i that X is Z(i)-acyclic
for each i ≤ n. The case i = n follows from our assumption that X is K(n)-acyclic (since K(n) ' Z(n)).
Suppose therefore that i < n and X is Z(i+ 1)-acyclic. We have a cofiber sequence

Σ2(pi−1)Z(i) vi→ Z(i)→ Z(i+ 1).

It follows that multiplication by vi acts invertibly on Z(i) ⊗ X, so that Z(i) ⊗ X ' Z(i)[v−1
i ] ⊗ X.It will

therefore suffice to show that X is Z(i)[v−1
i ]-acyclic. Since Z(i) is the smash product (over MU(p)) of Z(0)
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with M(pj − 1) for 0 ≤ j < i, it will suffice to show that X is Z(0)[v−1
i ]-acyclic. Using Example 1, we see

that Z(0)[v−1
i ] is Bousfield equivalent to E(i): since X is E(n − 1)-acyclic and i < n, the first part of the

proof shows that X is E(i)-acyclic and therefore Z(0)[v−1
i ]-acyclic as desired.

We now discussion the relationship between E(n)-localization and K(n)-localization. As a prototype,
suppose that M is a finitely generated abelian group and we wish to describe its localization M(p) at a prime
p. We can recover this localization as a fiber product

M(p) //

��

M̂

��
MQ // M̂Q

where M̂ denotes the p-adic completion of M . To obtain a similar picture in our setting, we will need the
following nontrivial fact:

Theorem 4 (Smash Product Theorem). The localization functor LE(n) is smashing.

Fix a spectrum X, and form a pullback diagram

X ′ //

��

LK(n)X

��
LE(n−1)X // LE(n−1)LK(n)X.

There is an evident map α : X → X ′.

Proposition 5. The map α exhibits X ′ as an En-localization of X.

Since every E(n)-acyclic spectrum is E(n − 1)-acyclic, every E(n − 1)-local spectrum is E(n)-local;
similarly, every K(n)-local spectrum is E(n)-local. Since the collection of E(n)-local spectra is stable under
fiber products, we conclude immediately that X ′ is E(n)-local. To complete the proof, it will suffice to
show that the map α is an E(n)-equivalence. By Proposition 2, it suffices to show that α induces both a
K(n)-equivalence and an E(n− 1)-equivalence. In other words, we must show that the diagrams

X ⊗K(n) //

��

(LK(n)X)⊗K(n)

��

X ⊗ E(n− 1) //

��

(LK(n)X)⊗ E(n− 1)

��
(LE(n−1)X)⊗K(n) // (LE(n−1)LK(n)X)⊗K(n) (LE(n−1)X)⊗ E(n− 1) // (LE(n−1)LK(n)X)⊗ E(n− 1)

are homotopy pullback squares. For the square on the right, this is obvious, since the vertical maps are both
homotopy equivalences. For the square on the left, the upper horizontal map is a homotopy equivalence;
we are therefore reduced to proving that the map LE(n−1)X ⊗ K(n) → (LE(n−1)LK(n)X) ⊗ K(n) is an
equivalence. This is a consequence of the following more general statement:

Lemma 6. Let X be any spectrum. Then LE(n−1)X is K(n)-acyclic.

Proof. Since LE(n−1) is smashing, we have (LE(n−1)X)⊗K(n) ' X ⊗LE(n−1)K(n). It therefore suffices to
show that LE(n−1)K(n) ' 0: in other words, that E(n− 1)⊗K(n) ' 0. This follows from the observation
that E(n− 1)⊗K(n) is complex orientable, and the associated formal group must have height ≤ n− 1 and
exactly n.
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Remark 7. According to Proposition 5, if X is an E(n)-local spectrum, then X can be recovered as
the homotopy fiber product LE(n−1)X ×LE(n−1)LK(n)X LK(n)X. Conversely, suppose that we are given an
arbitrary K(n)-local spectrum Y and E(n− 1)-local spectrum Z, together with a map α : Z → LE(n−1)Y .
Form a pullback diagram

X //

��

Y

��
Z // LE(n−1)Y.

Then X is E(n)-local. Moreover, since the lower horizontal map is an K(n)-equivalence (since the K(n)-
homology of both sides vanishes), we deduce that X → Y is a K(n)-equivalence: that is, Y can be identified
with LK(n)X. Similarly, since the right vertical map is an E(n − 1)-equivalence, we conclude that X → Z
is an E(n− 1)-equivalence so that Z can be identified with LE(n−1)X. It follows that the E(n)-local stable
homotopy category can be recovered as the homotopy category of triples (Y, Z, α : Z → LE(n−1)Y ), where
Y is K(n)-local, Z is E(n− 1)-local, and α is a map of E(n− 1)-local spectra.

In other words, the E(n)-local stable homotopy category admits a “semi-orthogonal” decomposition into
the E(n− 1)-local and K(n)-local stable homotopy categories.
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Uniqueness of Morava K-Theory (Lecture 24)

April 27, 2010

Fix a prime number p and an integer 0 < n < ∞. In Lecture 22, we introduced the Morava K-theory
spectrum K(n): a homotopy associative (and commutative if p > 2) ring spectrum with π∗K(n) ' Fp[v±1

n ],
vn ∈ π2(pn−1)K(n). However, our construction involved a number of arbitrary choices. Our goal in this
lecture is to show that the underlying spectrum of K(n) is independent of these choices (though its ring
structure is not).

We begin with the following:

Definition 1. Let R be a commutative evenly graded ring. We will say that R is a graded field if every
nonzero homogeneous element of R is invertible. Equivalently, R is a graded field if either R is either a field
k concentrated in degree zero, or has the form k[β±1] for some element β of positive even degree.

Remark 2. If R is a graded field, then every graded R-module M admits a free basis of homogeneous
elements. This is clear if R is a field. If R ' k[β±1] where β has degree d > 0, then any k-basis for⊕

0≤i<dMi is an R-basis for M .

Definition 3. We will say that a homotopy associative ring spectrum E is a field if π∗E is a graded field.

If E is as in Definition 3, then every E-module spectrum M is free: that is, it has the form
⊕

α ΣkαE for
some integers kα. To see this, choose a homogeneous basis of π∗M as a π∗E-module. Such a basis determines
a map of E-module spectra α :

⊕
ΣkαE →M , which is obviously a homotopy equivalence.

Example 4. For every prime number p and every integer n, the Morava K-theory spectrum K(n) is a field.

Example 5. For every field k (in the usual algebraic sense), the Eilenberg-MacLane spectrum Hk is a
field in the sense of Definition 3. In particular, H Q and HFp are fields. It is convenient to view these
as special cases of the above: note that the definition of K(n) makes sense when n = 0 and yields the
Eilenberg-MacLane spectrum K(0) ' H Q, and we agree to the convention that K(∞) = HFp.

Remark 6. Let E be a field and let X and Y be spectra. Since E is a field, we can write E⊗X =
⊕

ΣkαE;
in particular, E∗X = π∗(E ⊗X) is a free π∗E-module on generators of degree kα. We have

E∗(X ⊗ Y ) ' π∗(E ⊗X ⊗ Y ) ' π∗(
⊕

ΣkαE ⊗ Y ) '
⊕

E∗−kα(Y ) ' E∗(X)⊗π∗E E∗(Y ).

In other words, for every field there is a Kunneth formula for computing the homology of a smash product
of spectra (and therefore a Kunneth formulat for computing the homology of a product of spaces).

Lemma 7. Let f : X → Y be a map of spectra. Suppose that X and Y each admit the structure of
a K(n)-module, so that π∗X and π∗Y are modules over π∗K(n) ' Fp[v±n ]. Then the pushforward map
f∗ : π∗X → π∗Y is Fp[v±1

n ]-linear.

Proof. We can factor f as a composition

X → K(n)⊗X → K(n)⊗ Y → Y.
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Here we regard K(n)⊗X and K(n)⊗ Y as K(n)-module spectra via the left action of K(n) on itself. Each
of the maps in this diagram is a K(n)-module map except for the first. It therefore suffices to treat the case
Y = K(n) ⊗X. Since K(n) is a field, the module X is free, so we may reduce to the case X = K(n). In
this case, we are required to prove that the two evident maps

f, g : K(n)→ K(n)⊗K(n)

induce the same map on homotopy groups. In other words, we must show that f∗(vn) = g∗(vn).
Note that K(n) ⊗K(n) comes equipped with two complex orientations, determining two formal group

laws over R = πeven(K(n) ⊗K(n)). These formal group laws have p-series [p](t) ≡ f∗(vn)tp
n

mod (t)p
n+1

and [p]′(t) ≡ g∗(vn)tp
n

mod (t)p
n+1. Since these formal group laws differ by a coordinate change of the

form t 7→ t+ b1t
2 + b2t

3 + . . ., we conclude that f∗vn = g∗vn.

Proposition 8. Let X be a spectrum which admits the structure of a K(n)-module, and let Y be a retract
of X. Then Y admits the structure of a K(n)-module.

Proof. We have maps
Y

i→ X
r→ Y

whose composition is homotopic to idY . The composition f = i ◦ r is a map from X to itself. It follows from
the Lemma that f∗ is an Fp[v±1

n ]-module map from π∗X to itself. In particular, the image of f∗ is a graded
Fp[v±1

n ]-submodule of π∗X. This image is automatically free, and so has a basis of classes ηα ∈ πkαX. This
basis determines a map α :

⊕
ΣkαK(n) → X. By construction, the map r ◦ α induces an isomorphism on

homotopy groups and therefore determines an equivalence Y '
⊕

ΣkαK(n).

Proposition 9. Let E be any field and suppose that E ⊗K(n) is nonzero. Then E admits the structure of
a K(n)-module.

Proof. If E ⊗K(n) is nonzero, then the unit map E → E ⊗K(n) is nonzero. Using the assumption that E
is a field, we deduce that E is a direct summand of E ⊗K(n), and so admits a K(n)-module structure by
Proposition 8.

Proposition 10. Let E be a complex-oriented ring spectrum whose associated formal group has height exactly
n. If E 6= 0, then E ⊗K(n) 6= 0.

Note that E⊗E(n−1) is a complex oriented ring spectrum whose formal group is both of height ≤ n−1
and exactly n; it follows that E ⊗ E(n− 1) ' 0. If E ⊗K(n) ' 0, then it follows from the last lecture that
E ⊗E(n) ' 0. But π∗(E ⊗E(n)) is the pullback of the quasi-coherent sheaf FE on MFG along the flat map
SpecW (k)[[v1, . . . , vn−1]] → MFG. It follows that FE vanishes when restricted to the open substack M

≤n
FG.

Since the formal group of E has height ≤ n, we conclude that E ' 0.

Proposition 11. Let E be any complex-oriented ring spectrum whose formal group has height exactly n,
and whose homotopy groups are given by π∗E ' Fp[v±1

n ]. Then there is a homotopy equivalence of spectra
E ' K(n).

Proof. Since E 6= 0 and the formal group of E has height n, we conclude that E⊗K(n) 6= 0 (Proposition 10).
It follows from Proposition 9 that E admits the structure of a K(n)-module. This module is automatically
free (since K(n) is a field); it follows by inspecting homotopy groups that E must be free of rank 1: that is,
E ' K(n).

It follows from Proposition 11 that when n = 1, the Morava K-theory K(n) reduces to something
familiar. Let K denote the complex K-theory spectrum. Then K has a canonical complex orientation,
whose associated formal group law is given by f(x, y) = x + y + βxy, where β ∈ π2K denotes the Bott
element. Fix a prime number p, and let K̂ denote the p-adic completion of K. Then π0K̂ ' Zp, and the
formal group law over Zp deforms the multiplicative formal group law (of height 1) over Fp. We deduce:
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Proposition 12. Let f be the multiplicative formal group law over the field Fp. Then the associated Morava
E-theory is given by E(1) = K̂.

We have seen that, as a homology theory, E(1) is functorial with respect to automorphisms of the
underlying formal group. In particular, the automorphism group of the formal multiplicative group acts on
K̂. We have seen that this group can be identified with the group of units Z×p . For every p-adic unit λ, we
let ψλ denote the corresponding map from K̂ to itself (these are given by the classical Adams operations).

The group Z×p contains a finite subgroup µp−1, consisting of (p−1)st roots of unity. This finite group acts
on the associated homology theory K̂∗. We let K̂Ad

∗ denote the µp−1-invariants in K̂∗. Since K̂∗ takes values
in Z(p)-modules, passage to invariants is an exact functor so that K̂Ad

∗ is a homology theory, represented by
a spectrum K̂Ad. This is called the Adams summand of K̂; we have

π∗K̂
Ad ' Zp[β±(p−1)] ⊆ Zp[β±1] ' π∗K̂.

With a bit more effort, one can show that K̂Ad has the structure of a ring spectrum, and that the cofiber
of the multiplication by p map p : K̂Ad → K̂Ad inherits the structure of a ring spectrum. We denote this
cofiber by K̂Ad/p. A simple calculation gives π∗(K̂Ad/p) ' Fp[β±(p−1)]. Moreover, K̂Ad/p has a canonical
complex orientation, so we get a class v1 ∈ π2p−2(K̂Ad/p) which coincides with βp−1 (in fact, the p-series
for f(x, y) = x + y + βxy is given by [p](t) = (1+βt)p−1

β ≡ βp−1 mod p). It follows from Proposition 11

that K(1) ' K̂Ad/p: that is the 1st Morava K-group is given by the Adams summand of p-adic K-theory,
reduced modulo p.

Remark 13. We will later see that every field satisfies the hypotheses of Proposition 9 for some 0 ≤ n ≤ ∞.
In other words, the Morava K-theories K(n) are essentially the only examples of fields in the stable homotopy
category (provided that we allow the cases n = 0 and n =∞).
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The Nilpotence Theorem (Lecture 25)

April 27, 2010

In the last lecture, we defined a ring spectrum E to be a field if π∗E is a graded field. Every Morava
K-theory is a field. Conversely, if E is any field, then we claim that E has the structure of a K(n)-module
for some 0 ≤ n ≤ ∞ (and some prime number p, if n > 0). Equivalently, we claim that E ⊗K(n) is nonzero
for some n.

Remark 1. The integer n is uniquely determined: the cohomology theory E is complex oriented and n can
be characterized as the height of the associated formal group. (Similarly, the prime number p is uniquely
determined: it is the characteristic of the field π0E).

For the remainder of this lecture, we will fix a prime number p.

Proposition 2. Let {Eα} be a collection of ring spectra. The following conditions are equivalent:

(1) Let R be a p-local ring spectrum. If x ∈ πmR is a homotopy class whose image in Eα0 (R) is zero for
all α, then x is nilpotent in π∗R.

(2) Let R be a p-local ring spectrum. If x ∈ π0R is a homotopy class whose image in Eα0 (R) is zero for all
α, then x is nilpotent in π0R.

(3) Let X be an arbitrary p-local spectrum. If x ∈ π0X has trivial image under the Hurewicz map π0X →
Eα0 (X) for each α, then the induced class x⊗n ∈ π0X

⊗n is zero for n� 0.

(4) Let X be an arbitrary p-local spectrum, and let F be a finite spectrum. If f : F → X is such that each
composite map F → X → X ⊗ Eα0 is nullhomotopic, then f⊗n : F⊗n → X⊗n is nullhomotopic for
n� 0.

Proof. The implication (1) ⇒ (2) is obvious, and (2) ⇒ (3) follows by taking R to be the ring spectum⊕
nX

⊗n
(p) . The implication (3) ⇒ (4) follows by replacing X by the function spectrum XF . Suppose now

that (4) is satisfied, and let x ∈ πmR be a class whose image vanishes in Eαn (R) for all α. Let us identify x
with a map Sm → R. Then xn can be identified with the composition

Smn
x⊗n

→ R⊗n → R,

where the second map is given by the multiplication on n. Since x⊗n is nullhomotopic for n� 0 by (4), we
conclude that x is nilpotent.

We say that a collection of ring spectra {Eα} detects nilpotence if the equivalent conditions of Proposition
2 are satisfied.

The following fundamental result was proven by Devinatz, Hopkins, and Smith:

Theorem 3 (Nilpotence Theorem). For any ring spectrum R, the kernel of the map π∗R→ MU∗(R) consists
of nilpotent elements. In particular, the single cohomology theory MU detects nilpotence.

Corollary 4 (Nishida). For n > 0, every element of πnS is nilpotent.
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Proof. Let x ∈ πnS. Then x is torsion, so the image of x in MU∗(S) = π∗MU ' L is torsion. Since L is
torsion free, we conclude that the image of x is zero so that x is nilpotent by Theorem 3.

We will use Theorem 3 to deduce the following:

Theorem 5. The spectra {K(n)}0≤n≤∞ detect nilpotence.

We will prove that the spectra {K(n)}0≤n≤∞ satisfy condition (3) of Proposition 2. Let T denote the
homotopy colimit of the spectra

S
x→ X

x→ X⊗2 x→ X⊗3 → · · · .

Lemma 6. Let x ∈ π0X and T be defined as above, and let E be any ring spectrum. The following conditions
are equivalent:

(1) The spectrum T is E-acyclic.

(2) The image of x⊗n in E0(X⊗n) vanishes for n� 0.

Proof. If (1) is satisfied, then the canonical map S → T → T ⊗E is nullhomotopic. It follows that the map

S
x⊗n

→ X⊗n → X⊗n ⊗ E is nullhomotopic for n� 0, so that (2) is satisfied. For the converse, we note that
T ⊗ E can be identified with the homotopy colimit of the sequence

E → X⊗n ⊗ E → X⊗2n ⊗ E → · · ·

If (2) is satisfied, then each of the maps in this system is nullhomotopic, so the colimit is trivial.

We now turn to the proof of Theorem 5. Fix x ∈ π0X whose image in each K(n)0(X) is zero. We wish
to prove that some smash power x⊗n is trivial. By the nilpotence theorem, it will suffice to show that the
image of x in MU0(X) is nilpotent. By the Lemma, this is equivalent to showing that MU∗(T ) ' 0: that is,
the quasi-coherent sheaf FΣkT on MFG vanishes for k ∈ Z.

Choose cofiber sequences
Σ2k MU(p)

tk→ MU(p) →M(k)

as in the previous lectures. For n ≥ 0, let P (n) denote the smash product (taken over MU(p)) of the spectra
{M(k)}k 6=pm−1 and {M(pm − 1)}m<n, so that P (n) is a ring spectrum with

π∗P (n) ' Z(p)[v1, v2, . . .]/(v0, v1, . . . , vn−1).

In particular, P (0) is the ring spectrum BP ; we have seen that P (0) is Landweber exact and that the map
π∗P (0) → MFG×Spec Z(p) is faithfully flat. Then P (0)∗(X) is the pullback of the quasi-coherent sheaf
FΣ−∗X on MFG. It therefore suffices to show that P (0)∗(T ) ' 0.

Let P (∞) ' lim−→P (n), so that P (∞) ' HFp. By assumption, the image of x in P (∞)0(X) '
lim−→P (n)0(X) is zero. It follows that the image of x in P (n)∗(X) vanishes for some n < ∞. By the
lemma, we deduce that P (n)∗(T ) ' 0.

We now prove that P (m)∗(T ) ' 0 for all m, using descending induction on m. Assume that P (m +
1)∗(T ) ' 0. We have a cofiber sequence

Σ2(pm−1)P (m) vm→ P (m)→ P (m+ 1).

It follows that multiplication by vm is invertible on P (m)∗(T ), so that P (m)∗(T ) ' P (m)[v−1
m ]∗T . Since

P (m)[v−1
m ] is a module over MU(p)[v−1

m ], it will suffice to prove that T is MU(p)[v−1
m ]-acyclic. Note that

MU(p)[v−1
m ] is a Landweber-exact theory whose associated formal group has height ≤ m everywhere; it

therefore suffices to show that T is E(m)-acyclic.
We now prove using ascending induction on k ≤ m that T is E(k)-acyclic. By the main result of Lecture

23, the inductive step is equivalent to showing that T is K(k)-acyclic. This follows from our lemma, since
the image of x in K(k)0(X) vanishes by assumption.
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Remark 7. Since K(m) is a field, for each n ≥ 0 the homology K(m)∗(X⊗n) is the nth (algebraic) tensor
power of K(m)∗(X) over π∗K(m) ' Fp[v±1

m ]. It follows that x⊗n has trivial image in K(m)∗(X⊗n) if and
only if x has trivial image in K(m)∗(X) Consequently, we have the following slightly more precise result for
a homotopy class x ∈ π0X for a p-local spectrum X:

(∗) The class x⊗n ∈ π0X
⊗n is zero for n � 0 if and only if the image of x in K(m)0(X) vanishes for all

m.

Remark 8. We can drop the requirement that X is p-local if we impose the same condition at all Morava
K-theories (for all primes).

Corollary 9. Let E be a nonzero p-local ring spectrum. Then E ⊗K(n) is nonzero for some 0 ≤ n ≤ ∞.

Proof. If K(n)∗E ' 0 for all n, then Theorem 5 shows that every element of π0E is nilpotent. In particular,
the unit element 1 ∈ π0E is nilpotent, so that E ' 0.

Combining this with the results of the previous lecture, we deduce:

Corollary 10. Let E be a ring spectrum such that π∗E is a graded field. Then E has the structure of a
K(n)-module for some n (and some prime number p).
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Thick Subcategories (Lecture 26)

April 27, 2010

Let p be a prime number, fixed throughout this lecture.
Let C be a full subcategory of the category of p-local spectra which is stable under homotopy colimits

and desuspension, and which is generated under homotopy colimits by a small subcategory. The theory of
Bousfield localization allows us to associate to every p-local spectrum X a canonical fiber sequence

C(X)→ X → L(X),

where C(X) ∈ C and L(X) is C-local (that is, every map from an object of C into L(X) is nullhomotopic).
Let C0 be the collection of all finite p-local spectra contained in C. If C0 generates C under homotopy

colimits, then the localization functor L is smashing. In this case, C0 determines C and vice versa. The
following definition axiomatizes the expected properties of C0:

Definition 1. Let T be a full subcategory of the homotopy category of finite p-local spectra. We say that T

is thick if it contains 0, is closed under the formation of fibers and cofibers, and if every retract of a spectrum
belonging to T also belongs to T.

Remark 2. Let T be a thick subcategory of finite p-local spectra. If X ∈ T and Y is any finite p-local
spectrum, then X ⊗ Y ∈ T. Indeed, the collection of p-local finite spectra Y which for which X ⊗ Y ∈ T is
itself thick. Since it contains the p-local sphere S(p), it contains all finite p-local spectra (every finite p-local
spectrum admits a finite cell decomposition).

Remark 3. Let T be any thick subcategory of the category of finite p-local spectra, and let C be the
collection of p-local spectra generated by T under homotopy colimits. Every object X ∈ C can be written
as a filtered colimit of objects Xα ∈ T. In particular, if X is a finite p-local spectrum, then the identity
map X → lim−→Xα factors through some Xα. Thus X is a retract of Xα and so X ∈ T. Consequently,
the construction T 7→ C determines a bijection between thick subcategories of finite p-local spectra and
subcategories C of the category of all p-local spectra, which are stable under desuspension and generated by
p-local finite spectra under homotopy colimits.

Our next goal is to describe some thick subcategories. We begin with the following observation:

Lemma 4. Let X be a finite p-local spectrum. Suppose that K(n)∗(X) ' 0 for some n > 0. Then K(n −
1)∗(X) ' 0.

To prove this, we let R denote the ring spectrum obtained by smashing MU(p)[v−1
n ] over MU(p) with

the spectra {M(k)}k 6=pn−1,pn−1−1. For simplicity, let us assume n > 1 (the proof in the case n = 1 is
essentially the same, but the notation changes). Then R is a ring spectrum with π∗R ' Fp[vn−1, v

±1
n ]. In

particular, π0R is equivalent to the polynomial ring Fp[van−1v
−b
n ] = Fp[t] where (a, b) is the minimal solution

to a(pn−1 − 1) − b(pn − 1) = 0. Note that for every integer k, Rk(X) is a finitely generated module over
π0R. We have a cofiber sequence

Σ2(pn−1−1)R
vn−1→ R→ K(n).

Since K(n)∗X ' 0, we conclude that multiplication by vn−1 and hence multiplication by t acts invertibly
on each Rk(X). It follows that each Rk(X) is a torsion module over Fp[t], and is therefore annihilated by
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almost every irreducible polynomial in Fp[t]. In particular, we can choose a nonzero polynomial f(t) which
annihilates each Rk(X) for 0 ≤ k < 2(pn − 1) and therefore for all values if k (since π∗R is periodic with
period 2(pn − 1)). Without loss of generality, f(t) is divisible by t. For k � 0, the product f(t)vkn can be
written as a polynomial in vn−1 and vn, and therefore comes from π∗MU. We can therefore localize R to
obtain a new ring spectrum R[f(t)−1] with R[f(t)−1]∗X ' R∗X[f(t)−1] ' 0.

By construction, R[f(t)−1] has a complex orientation and the associated formal group has height exactly
n − 1 (since f(t) is divisible by t, so vn−1 is invertible in π∗R[f(t)−1]). It follows that R[f(t)−1] ⊗ K(m)
vanishes for m 6= n− 1. Since R[f(t)−1] 6= 0, R[f(t)−1]⊗K(n− 1) 6= 0 and therefore contains K(n− 1) as a
retract. Since X⊗R[f(t)−1] ' 0, we conclude that X⊗R[f(t)−1]⊗K(n− 1) ' 0 so that X⊗K(n− 1) ' 0,
as desired.

Remark 5. Let X be a finite p-local spectrum. Then H∗(X; Fp) ' 0 if and only if X ' 0. Moreover,
Hk(X; Fp) vanishes for almost all values of k. For n � 0, the Atiyah-Hirzebruch spectral sequence for
K(n)∗(X) degenerates to give K(n)∗(X) ' H∗(X; Fp)[v±1

n ]. It follows that if X 6= 0, then K(n)∗(X) 6= 0
for n� 0.

Definition 6. We say that a p-local finite spectrum X has type n if K(n)∗(X) 6= 0 but K(m)∗(X) ' 0 for
m < n. For example, X has type 0 if H∗(X; Q) ' 0, or equivalently if H∗(X; Z) is not a torsion group.

Every nonzero finite p-local spectrum X has type n for some unique n. By convention, we will say that
the spectrum 0 has type ∞.

Definition 7. Let C≥n be the collection of finite p-local spectra which have type ≥ n. In other words,
X ∈ C≥n if and only if K(m)∗(X) ' 0 for m < n.

Using the long exact sequence in K(m)-homology, we see that if we are given a cofiber sequence

X ′ → X → X ′′,

and any two of X ′, X, and X ′′ has type ≥ n, then so does the third. Moreover, it is clear that any retract
of a spectrum of type ≥ n is also of type ≥ n. Consequently, C≥n is a thick subcategory of the category of
finite p-local spectra.

The main result of this lecture is the following:

Theorem 8 (Thick Subcategory Theorem). Let T be a thick subcategory of finite p-local spectra. Then
T = C≥n for some 0 ≤ n ≤ ∞.

In other words, the C≥n are exactly the thick subcategories of finite p-local spectra.

Remark 9. It is not yet clear that the classes C≥n are different for distinct n. This is equivalent to the
following assertion: for every nonnegative integer n, there exists a finite p-local spectrum of type n. We will
discuss the proof of this theorem in the next lecture.

Let T be as in Theorem 8. If T contains only the zero spectrum, then we can take n = ∞. Otherwise,
there exists a nonzero spectrum X ∈ T having type n for n < ∞. Choose X so that n is minimal; we wish
to prove that T = C≥n. The inclusion T ⊆ C≥n is clear (otherwise, T would contain a spectrum of type < n,
contradicting minimality). Theorem 8 can therefore be reformulated as follows:

Proposition 10. Let T be a thick subcategory containing a type n spectrum X. If Y is a spectrum of type
≥ n, then Y ∈ T.

To prove this, let DX denote the (p-local) Spanier-Whitehead dual of X. The identity map X → X
is classified by a map e : S(p) → X ⊗ DX. Since X has type n, we note that e induces an injection
K(m)∗(S(p))→ K(m)∗(X ⊗DX) ' K(m)∗(X)⊗Fp[v±1

m ] K(m)∗(X)∨ for m ≥ n. Form a fiber sequence

F
f→ S(p) → X ⊗DX.
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It follows that the map K(m)∗F → K(m)∗(S(p)) is zero for m ≥ n. Consider the composite map

g : F
f→ S(p) → Y ⊗DY.

Then g induces the zero map K(m)∗F → K(m)∗(Y ⊗ DY ) for m ≥ n (since f has the same property)
and also for m < n (since Y has type ≥ n, so that K(m)∗(Y ⊗DY ) ' 0). By the nilpotence theorem, we
conclude that some smash power F⊗k → (Y ⊗DY )⊗k is nullhomotopic. Composing with the multiplication
on Y ⊗DY , we get a nullhomotopic map F⊗k → Y ⊗DY , which corresponds to the composition

F⊗k ⊗ Y f→ F⊗k−1 ⊗ Y f→ · · · → Y.

It follows that Y is a retract of the cofiber Y/(F⊗k ⊗ Y ). Consequently, to show that Y ∈ T, it will suffice
to show that Y/(F⊗k ⊗ Y ) ∈ T.

The spectrum Y/F⊗k⊗Y admits a finite filtration by spectra of the form (F⊗a⊗Y )/(F⊗a+1⊗Y ). Since
T is thick, it will suffice to show that each of these belongs to T. Each of these spectra has the form

F⊗a ⊗ Y ⊗ (S(p)/F ) ' F⊗a ⊗ Y ⊗DX ⊗X,

and therefore belongs to T since X ∈ T (Remark 2).
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The Periodicity Theorem (Lecture 27)

April 27, 2010

Let p be a prime number, fixed throughout this lecture. In the last lecture, we asserted that for every
integer n ≥ 0, there exists a finite p-local spectrum X of type n. If n = 0, this just means that the rational
homology H∗(X; Q) is nonzero. We can achieve this by taking X to be the p-local sphere S(p).

When n = 1, we can define X to be the mod p Moore spectrum, which is defined by the cofiber sequence

S
p→ S → X.

This has no rational homology. However, since multiplication by p annihilates K(1)∗(S) ' Fp[v±1
1 ], the map

K(1)∗(S)→ K(1)∗X is injective. In particular, K(1)∗(X) 6= 0, so that X has type 1.
For n > 1, it is somewhat harder to construct spectra of type n. We can try to mimic the previous

construction. Namely, suppose that we are given a spectrum X of type n. We might try to find a self map
f : ΣkX → X so that we can form a cofiber sequence

ΣkX
f→ X → X/f,

and hope that X/f has type n + 1. It is clear that X/f has type ≥ n. To guarantee that X/f has type
exactly n+ 1, we need to know two things:

(1) The K(n)-homology of X/f vanishes: in other words, f induces an isomorphism from K(n)∗X to
itself.

(2) The K(n + 1)-homology of X/f does not vanish: that is, f does not induce an isomorphism from
K(n+ 1)∗X to itself.

This motivates the following definition:

Definition 1. Let X be a p-local finite spectrum, and let n ≥ 1. A vn-self map is a map f : ΣkX → X
with the following properties:

(a) f induces an isomorphism K(n)∗X → K(n)∗X.

(b) For m 6= n, the induced map K(m)∗X → K(m)∗X is nilpotent.

Remark 2. If X is a p-local finite spectrum which admits a vn-self map f , then X must have type ≥ n.
For if X has type m < n, then X/f has nonvanishing K(m)-homology (since f is not an isomorphism on
K(m)∗X) but vanishing K(n)-homology.

Example 3. If X is a spectrum of type > n, then K(n)∗X vanishes: it follows that the zero map 0 : X → X
is a vn-self map.

The crucial case to consider is where X has type n. In this case, a vn-self map f : ΣkX → X will satisfy
conditions (1) and (2) above, so that X/f will be a spectrum of type n + 1. Consequently, to verify the
existence of spectra of type n for every n, it will suffice to prove the following:
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Theorem 4 (Periodicity Theorem). Let X be a finite p-local spectrum of type ≥ n. Then X admits a vn-self
map.

It will be useful to reformulate the notion of a vn-self map. If X is a finite p-local spectrum, then
R = X ⊗DX has the structure of a ring spectrum. Moreover, giving a self map ΣkX → X is equivalent to
giving an element of πkR. The condition of being a vn-self map translates as follows:

Definition 5. Let R be a p-local ring spectrum. An element x ∈ πkR is a vn-element if the image of x in
K(m)∗R is nilpotent for m 6= n, and invertible for m = n.

This is equivalent to saying that left multiplication by x induces a vn-self map from R to itself. In
particular, it implies that R has type ≥ n > 0, so that the homotopy groups π∗R consist of p-power torsion.

Lemma 6. Let R be a finite p-local ring spectrum and let x ∈ πkR be a vn-element. After raising x to a
suitable power, we may assume that x 7→ van ∈ K(n)∗(R) and x 7→ 0 ∈ K(m)∗R for m 6= n.

Proof. Recall that K(m)∗R ' H∗(R; Fp)[v±1
m ] for m � 0. It follows that x is nilpotent in H∗(R; Fp).

Replacing x by a suitable power, we may assume that x 7→ 0 ∈ H∗(R; Fp) and therefore x 7→ 0 ∈ K(m)∗R
for m � 0. Consequently, there are only finitely many integers m 6= n for which the image of x does
not vanish in K(m)∗(R). Each of these images is nilpotent; raising x to a power, we may assume that
x 7→ 0 ∈ K(m)∗R for m 6= n.

Note that K(n)∗R is a finite module over π∗K(n) ' Fp[v±1
n . It follows that (K(n)∗R)/(vn − 1) is

finite. The image of x ∈ (K(n)∗R)/(vn − 1) is a unit, so after raising x to a power we may assume that
x 7→ 1 ∈ (K(n)∗R)/(vn − 1) '

⊕
0≤i<2(pn−1)K(n)iR. It follows that x 7→ van ∈ K(n)∗R for some a.

Lemma 7. Let R be a Z(p) algebra, and let x, y ∈ R be commuting elements such that x− y is torsion and
nilpotent. Then xp

k

= yp
k

for k � 0.

Proof. We have

xp
k

= (y + (x− y))p
k

= yp
k

+
∑

0<i≤pk

(
pk

i

)
yp

k−i(x− y)i.

If (x− y)p
a

= 0, we can rewrite the right hand side as

yp
k

+
∑

0<i<pa

pk

i

(
pk − 1
i− 1

)
yp

k−i(x− y)i.

Each expression pk

i is divisible by pk−a, and therefore annihilates x− y if k � 0.

Lemma 8. Let R be a finite p-local ring spectrum and let x ∈ πkR be a vn-element. After raising x to a
suitable power, we may assume that x is central in π∗R.

Proof. Without loss of generality we may assume that x satisfies the conclusions of Lemma 6. Let A =
R⊗DR, and let a, b ∈ πkA be given by the self-maps of R given by left and right multiplication by x. Then
a and b commute. Since A has type > 0, π∗A is torsion, so a − b ∈ πkA is torsion. We claim that a − b is
nilpotent. To prove this, it suffices to show that the image of a− b vanishes in K(m)∗A for every integer m:
in other words, the composite maps

R→ K(m)⊗R x×→ K(m)⊗R

R→ K(m)⊗R ×x→ K(m)⊗R
agree. If m 6= n, this is clear (since x 7→ 0 ∈ K(m)∗R. For m = n, we are reduced to proving that left and
right multiplication by vjn induce the same self-map of K(m) ⊗ R. This is clear, since K(n) is a homotopy
associative ring spectrum in the category of MU(p)-modules and vn lies in the image of π∗ MU(p) → π∗K(n).

Lemma 7 gives ap
j

= bp
j

for j � 0. Replacing x by xp
j

, we can assume that a = b, so that left and right
multiplication by x agree.
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Lemma 9. Let R be a finite p-local ring spectrum and x, y ∈ π∗R two vn-elements. Then xa = yb for
suitable a, b > 0.

Proof. Raising x and y to suitable powers, we may assume that x, y 7→ 0 ∈ K(m)∗R for m 6= n and
x, y 7→ vjn ∈ K(n)∗R. Raising to a further power we may assume that x and y commute. Since R is of type
> 0, π∗R is torsion so that x− y is a torsion element of π∗R. Then x− y 7→ 0 ∈ K(m)∗R for all m, so x− y
is nilpotent. Using Lemma 7 we conclude that xp

j

= yp
j

for j � 0.

Lemma 10. Let X and Y be spectra which admit vn-self maps f : ΣaX → X and g : ΣbY → Y . Let
h : X → Y be any map. Then, replacing f and g by suitable powers, we may assume that a = b and that the
diagram

ΣaX

f

��

h // ΣaY

g

��
X

h // Y

commutes up to homotopy.

Proof. We can view the map h as given by e : S → DX ⊗ Y . The commutativity of the diagram then
amounts to a homotopy (Df ⊗ idY ) ◦ e ' (idDX ⊗g) ◦ e. Since Df ⊗ idY and idDX ⊗g are two vn-self maps
of DX ⊗ Y , this identity will hold after replacing f and g by appropriate powers (Lemma 9).

Proposition 11. Let T be the collection of p-local finite spectra which admit a vn-self map. Then T is thick.

Proof. It is clear that 0 ∈ T and that T is closed under suspension and desuspension. We next show that T

is closed under taking cofibers. Let h : X → Y be a map of p-local finite spectra which admit vn-self maps
f and g. By virtue of Lemma 10, we may assume that the diagram

ΣkX

f

��

h // ΣkY

g

��
X

h // Y

commutes up to homotopy. We may further assume that f and g are zero on K(m)-homology for m 6= n.
A choice of homotopy induces a map of cofibers x : Σk(Y/X)→ Y/X. We claim that x is a vn-self map.

Since f and g induce an isomorphism on K(n)-homology, the associated long exact sequence in homology
shows that x induces an isomorphism on K(n)-homology. For m 6= n, we have a map of exact sequences

K(m)∗−kY //

0

��

K(m)∗−k(Y/X)

x

��

// K(m)∗−k−1X

0

��
K(m)∗Y

φ // K(m)∗Y/X // K(m)∗−1X.

It follows that x carries K(m)∗−k(Y/X) into the image of φ and that multiplication by x is trivial on the
image of φ, so that x2 is trivial on K(m)∗Y/X.

It remains to prove that T is stable under retracts. Let X and Y be p-local spectra and assume that
X ⊕ Y admits a vn-self map f . Raising f to a power, we may assume that f vanishes on K(m)∗(X ⊕ Y ) for
m 6= n and is given by multiplication by vjn on K(n)∗(X ⊕ Y ). Then the composite map

ΣkX → Σk(X ⊕ Y )
f→ X ⊕ Y → X

has the same properties, and is therefore a vn self map.
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Let T be the thick subcategory of Proposition 11. The periodicity theorem can be restated as follows: T

contains every spectrum of type ≥ n. By the thick subcategory theorem, this is equivalent to the following
result, which we assert without proof:

Proposition 12. For every integer n ≥ 0, there exists a finite p-local spectrum X of type n, and a vn-self
map f : ΣkX → X.
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Telescopic Localization (Lecture 28)

April 12, 2010

Let p be a prime number, fixed throughout this lecture.
Let X be a p-local finite spectrum of type ≥ n. In the last lecture, we saw that X admits a vn-self map

f : ΣkX → X. Moreover, such a map is asymptotically unique: if f ′ : Σk′X → X is another vn-self map,
then f i ' f ′

j for some integers i, j > 0. It follows that the colimit of the sequence

X
f→ Σ−kX

f→ Σ−2kX → · · ·

is independent of f . Let us denote this colimit by X[f−1].
We can describe X[f−1] more intrinsically as follows. Let C≥n+1 denote the collection of all p-local finite

spectra of type > n. Then C≥n+1 determines a localization of the category of p-local spectra: that is, for
every p-local spectrum X there is a canonical cofiber sequence

C(X)→ X → Lt
n(X),

where C(X) can be written as a filtered colimit of objects in C≥n+1, and Lt
n(X) is local with respect to

C≥n+1: in other words, if Y is a finite p-local spectrum of type > n, then every map e : Y → Lt
n(X) is

nullhomotopic.

Proposition 1. Let X be a finite p-local spectrum of type ≥ n, and let f be a vn-self map of X. Then
Lt

n(X) ' X[f−1].

More precisely, the canonical map u : X → X[f−1] exhibits X[f−1] as a C≥n+1-localization of X. To see
this, we must verify two things:

(1) The fiber of the map u : X → X[f−1] is a filtered colimit of objects of C≥n+1. This is clear: the cofiber
of u can be identified with the colimit of the sequence

0→ Σ−kX/X → Σ−2kX/X → . . .

Each Σ−bkX/X is (up to a shift) the cofiber of the vn-self map f b on X, which has type > n.

(2) The object X[f−1] is C≥n+1-local. In other words, if Y is a finite spectrum of type > n, then every map
e : Y → X[f−1] is nullhomotopic. To see this, it suffices to show that DY ⊗X[f−1] is nullhomotopic.
Without loss of generality, we may suppose that f induces the zero map on K(m)∗X for m 6= n.
It follows that idDY ⊗f induces the zero map on K(m)∗(DY ⊗ X) for all integers m: here we use
the assumption that Y is of type > n and the Kunneth formula to see that K(n)∗(DY ⊗ X) ' 0.
By the nilpotence theorem, we conclude that idDY ⊗fa is nilpotent for a � 0. Replacing f by fa,
we may assume that idDY ⊗f is nullhomotopic, so that DY ⊗X[f−1] is the colimit of a sequence of
nullhomotopic maps

DY ⊗X → DY ⊗ Σ−kX → · · ·

and therefore contractible.

1



Remark 2. The functor Lt
n is sometimes referred to as telescopic localization. This is essentially a reference

to Proposition 1, which gives an explicit construction of Lt
n (for type n-spectra) as a telescope: that is, as

the homotopy colimit of a sequence of spectra.

We can view the theory of vn-self maps as providing an explicit description of the effect of the localization
functor Lt

n on finite p-local spectra of type ≥ n. By applying this reasoning iteratively, we can understand Lt
n

on arbitrary p-local finite spectra. To see this, let us begin with a p-local finite spectrum X. By convention,
we can think of multiplication by p as a v0-self map of X. That is, we can form the colimit X[p−1] of the
sequence

X
p→ X

p→ X
p→ X → · · ·

The above reasoning shows that X[p−1] can be identified with Lt
0(X). We therefore have a cofiber sequence

lim−→
k

Σ−1X/pk → X → Lt
0(X)

where X/pk denotes the cofiber of multiplication by pk on X. Applying the functor Lt
1, we get a commutative

diagram
lim−→k

Σ−1X/pk //

��

X //

��

Lt
0(X)

��
Lt

1 lim−→Σ−1X/pk // Lt
1(X) // Lt

1L
t
0(X)

The vertical map on the right is an equivalence, since Lt
0(X) is already local with respect to C≥2. It follows

that the fiber F of the map X → Lt
1X can be identified with the fiber of the map

lim−→
k

Σ−1X/pk → Lt
1 lim−→Σ−1X/pk

Since Lt
1 is a smashing localization, it commutes with filtered colimits and we can therefore write F as the

filtered colimit of the fibers of the maps

q : Σ−1X/pk → Σ−1Lt
1X/pk.

Since each X/pk is a finite p-local spectrum of type ≥ 1, Proposition ?? implies that Lt
1X/pk can be identified

with X/pk[f−1
k ], where fk is a v1-self map of X/pk. It follows that the fiber of q can be identified with the

direct limit lim−→Σ−2(X/pk)/f l
k. Thus F can be identified with the colimit lim−→k

lim−→l
Σ−2(X/pk)/f l

k.
Here it is convenient to ignore the fact that fk depends on k, and to denote all vn-self maps by by the

symbol vn (so that v0 = p). We can summarize our analysis informally as follows: we have a cofiber sequence

lim−→
k0,k1

Σ−2X/(vk0
0 , vk1

1 )→ X → Lt
1(X).

This provides a somewhat explicit description of Lt
1(X) as the cofiber of a map from a colimit of type

≥ 2-spectra into X.
Applying this argument repeatedly, we arrive at an “explicit” description of Lt

n(X): it sits in a fiber
sequence

lim−→
k0,...,kn

Σ−nX/(vk0
0 , . . . , vkn

n )→ X → Lt
n(X).

Since Lt
n is a smashing localization, it is in some sense determined by what it does to the (p-local) sphere

spectrum. We have a cofiber sequence

lim−→
k0,...,kn

S−n/(vk0
0 , . . . , vkn

n )→ S(p) → Lt
nS(p).
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Smashing this cofiber sequence with X, we recover the sequence given above. However, there is another
construction available in this context: instead of smashing with X, we can consider function spectra of maps
into X. We get a fiber sequence

XLt
nS(p) → X → lim←−XS−n/(v

k0
0 ,...,vkn

n ).

Unwinding the notation, we see that the function spectra on the right have a more direct description as
the smash product of X with S/(vk0

0 , . . . , vkn
n ), which we will denote by X/(vk0

0 , . . . , vkn
n ). We can therefore

think of the homotopy inverse limit on the right as a kind of completion of X.

Remark 3. Let D be the collection of all C≥n+1-local spectra: that is, p-local spectra X such that every
map Y → X is nullhomotopic if Y is a finite p-local spectrum of type > n. Then D is closed under shifts
and homotopy colimits, and therefore determines another Bousfield localization functor R. That is, for every
p-local spectrum X, there is a canonical cofiber sequence

D(X)→ X → R(X)

where D(X) ∈ D and R(X) is D-local: that is, every map g : Y → R(X) is nullhomotopic if Y ∈ D.

Proposition 4. Let X be a p-local spectrum. Then the fiber sequence

XLt
nS(p) → X → lim←−X/(vk0

0 , . . . , vkn
n )

can be identified with the fiber sequence of Remark 3.

In other words, the functor R of Remark 3 can be described as a “completion” with respect to the ideal
v0, . . . , vn, given by X 7→ lim←−X/(vk0

0 , . . . , vkn
n ).

As with Proposition 1, there are two things to prove:

(1) The function spectrum XLt
nS(p) belongs to D. Let Y be a finite p-local spectrum of type > n; we

wish to show that every map u : Y → XLt
nS(p) is nullhomotopic. We can identify u with a map

Y ⊗ Lt
nS(p) → X. Such a map is automatically nullhomotopic, since Y ⊗ Lt

nS(p) ' Lt
nY vanishes by

virtue of our assumption that Y has type > n.

(2) The homotopy inverse limit lim←−X/(vk0
0 , . . . , vkn

n ) is D-local. Since the collection of D-local spectra is
stable under homotopy inverse limits, it suffices to show that each term in the system is D-local. Each
of these terms has the form XK , where K is a finite p-local spectrum of type > n. Let Y ∈ D and
suppose we are given a map u : Y → XK ; we wish to show that u is nullhomotopic. We can identify u
with a map Y ⊗K → X. To see that such a map is nullhomotopic, it suffices to show that Y ⊗K ' 0.
This is clear, since Y ∈ D implies that Y ' Lt

nY , so that

Y ⊗K ' Lt
nY ⊗K ' Y ⊗ Lt

nK ' 0,

by virtue of the fact that K has type > n.
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Telescopic vs. En-Localization (Lecture 29)

April 13, 2010

Let p be a prime number, fixed throughout this lecture. Let L be a Bousfield localization functor on
p-local spectra. Our goal in this lecture is to obtain a structure theorem for L, under the assumption that
L is smashing.

Let us begin by fixing a bit of terminology. We say a spectrum X is L-local if the map X → LX is an
equivalence.

Lemma 1. Let L be a localization functor. For 0 ≤ n ≤ ∞, we have either LK(n) ' 0 or LK(n) ' K(n).

Proof. We have a map of ring spectra K(n) → LK(n). Consequently, LK(n) has the structure of a K(n)-
module. If LK(n) 6= 0, then LK(n) contains K(n) (possibly shifted) as a retract. Since LK(n) is L-local,
we conclude that K(n) is L-local so that K(n) ' LK(n).

Lemma 2. Let L be a smashing localization functor and let E be a nonzero complex-oriented cohomology
theory whose formal group has height exactly n. Then LE ' 0 if and only if LK(n) ' 0.

Proof. If LE ' 0, then 0 ' K(n) ⊗ LE ' LK(n) ⊗ E. Since K(n) ⊗ E 6= 0, we conclude that LK(n) ' 0
(Lemma 1). Conversely, suppose that LK(n) ' 0. Then 0 ' LK(n)⊗E ' K(n)⊗LE. On the other hand,
LE ⊗ K(m) ' 0 for m 6= n, since it is a complex oriented ring spectrum whose formal group has height
exactly m and exactly n. It follows from the nilpotence theorem that LE ' 0.

Lemma 3. Let L be a smashing localization functor. If LK(m) ' 0, then LK(n) ' 0 for n > m.

Proof. For k ≥ 0, let M(k) denote the cofiber of the map tk : Σ2k MU(p) → MU(p), and let R be the
ring spectrum obtained by smashing (over MU(p)) the spectra {M(k)}k 6=pm−1,pn−1 with MU(p)[v−1

n ]. For
notational simplicity we will assume that 0 < m < n < ∞, so that π∗R ' Fp[vm, v

±1
n ]. Note that R[v−1

m ]
is a ring spectrum whose associated formal group has height exactly m. It follows from Lemma 2 that
LR[v−1

m ] ' 0. Since L is smashing, we can identify LR[v−1
m ] with the colimit of the sequence

LR
vm→ Σ−2(pm−1)LR

vm→ Σ−4(pm−1)LR→ · · ·

It follows that 1 ∈ π0LR vanishes in π0Σ−2k(pm−1)R for k � 0: in other words, the image of vk
m vanishes

in π∗LR. Let R′ denote the cofiber of the map vk+1
m : Σ2(k+1)(pm−1)R → R, so that vk

m vanishes in π∗LR
′.

Since π∗R′ ' Fp[vm, v
±1
n ]/(vk+1

m ), we conclude that the map π∗R
′ → π∗LR

′ is not injective. In particular,
R′ is not L-local. Note that R′ can be obtained as a successive extension of k + 1 copies of R/vm ' K(n).
It follows that K(n) is not L-local. According to Lemma 1, this means that LK(n) ' 0.

If L is any localization functor, let us denote by ker(L) the collection of all L-acyclic spectra: that is,
spectra X such that LX ' 0.

Lemma 4. Let L be a smashing localization functor, and let n ≥ 0 be an integer. The following conditions
are equivalent:

(1) LK(n) ' 0.
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(2) LK(m) ' 0 for n ≤ m ≤ ∞.

(3) Every finite p-local spectrum X of type ≥ n belongs to ker(L).

(4) There exists a finite p-local spectrum X of type n in ker(L).

Proof. The implication (1)⇒ (2) follows from Lemma 3. The implication (3)⇒ (4) is clear (since there exists
a finite p-local spectrum of type n). To prove that (4) ⇒ (1), we note that LX ' 0 implies LX ⊗K(n) '
X ⊗ LK(n) ' 0. If LK(n) 6= 0, then LK(n) ' K(n) so that X ⊗ LK(n) 6= 0, since X has type n.

It remains to prove that (2) ⇒ (3). Let X be a p-local finite spectrum of type ≥ n. We wish to prove
that LX ' 0. Let R = X ⊗ DX; since LX is an LR-module, it will suffice to show that LR ' 0. Since
LR is a ring spectrum, by the nilpotence theorem it will suffice to show that LR ⊗ K(m) ' 0 for every
m. If m < n, we have LR ⊗ K(m) ' L(R ⊗ K(m)) ' 0 since R has type ≥ n > m. If m ≥ n, then
LR⊗K(m) ' R⊗ LK(m) ' 0 because LK(m) ' 0 by assumption (2).

(A) We have LK(n) ' 0 for all 0 ≤ n <∞.

(B) We have LK(n) ' K(n) for all 0 ≤ n <∞.

(C) There exists an integer n ≥ 0 such that LK(n) ' K(n) but LK(n+ 1) ' 0.

In case (A), Lemma 2 guarantees that L annihilates every finite p-local spectrum of type ≥ 0. In
particular, for every X we have

LX ' X ⊗ LS(p) ' X ⊗ 0 ' 0 :

that is, L is the zero functor.
Let us now analyze case (C). Fix n such that LK(n) ' K(n) but LK(n+ 1) ' 0. Lemma 4 implies that

ker(L) contains every finite spectrum of type > n. Conversely, if X is a finite p-local spectrum such that
LX ' 0, we have

0 ' K(n)⊗ LX ' LK(n)⊗X ' K(n)⊗X

so that X must have type > n. In other words, the finite p-local spectra belonging to ker(f) are precisely
the spectra of type > n: that is, the spectra which are E(n)-acyclic. Conversely, we have the following:

Proposition 5. Let L be a smashing localization, and suppose that LK(n) ' K(n). Then every spectrum
which belongs to ker(L) is E(n)-acyclic.

Remark 6. An equivalent formulation is the following: if L is a smashing localization with LK(n) ' K(n),
then every E(n)-local spectrum is L-local.

Proof. Let X ∈ ker(L). We wish to show that X is E(n)-acyclic. Since E(n) is Bousfield equivalent to
K(0)⊕ · · · ⊕K(n), it suffices to show that X is K(m)-acyclic for m ≤ n. This follows from

K(m)⊗X ' LK(m)⊗X ' K(m)⊗ LX ' 0,

since L is smashing and LK(m) ' K(m) for m ≤ n (Lemma 3).

Let us now return to case (C). If L is a smashing localization with LK(n) ' K(n) and LK(n+ 1) ' 0,
then we conclude that ker(L) consists of E(n)-acyclic spectra, and contains all finite En-acyclic spectra. In
other words, we have

ker(Lt
n) ⊆ ker(L) ⊆ ker(LE(n)).

The following conjecture of Ravenel is the main open problem left in the subject (though it is generally
believed to be false):

Conjecture 7 (Telescope Conjecture). The localization functors Lt
n and LE(n) coincide. In particular, every

smashing localization L satisfying (C) above has the form Lt
n for some n ≥ 0.

2



It remains to treat the case (B): suppose that L is a smashing localization with LK(n) ' K(n) for
n ≥ 0. According to Remark 6, if X is an E(n)-local spectrum for any X, then X is L-local. In particular,
the chromatic tower

· · · → LE(2)S(p) → LE(1)S(p) → LE(0)S(p)

consists of L-local spectra, so that homotopy inverse limit of this tower is L-local. Next week we will prove
the following:

Theorem 8 (Chromatic Convergence Theorem). The homotopy inverse limit of the chromatic tower is S(p).

Corollary 9. Let L be a smashing localization such that LK(n) ' K(n) for 0 ≤ n < ∞. Then L is
equivalent to the identity functor.

Proof. Using the chromatic convergence theorem and Remark 6, we deduce that S(p) is L-local. Then, for
any p-local spectrum X, we have

LX ' X ⊗ LS(p) ' X ⊗ S(p) ' X.
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Localizations and the Adams-Novikov Spectral Sequence (Lecture

30)

April 17, 2010

Throughout this lecture, we fix a ring spectrum E. We will assume for simplicity that E is a structured
ring spectrum. To any spectrum X, we can associate the cosimplicial ring spectrum [n] 7→ X⊗E⊗n+1, which
we will denote by X•. The homotopy inverse limit of X• is called its totalization and denoted Tot(X•). It
is given as an inverse limit of partial totalizations

· · · → Tot2(X•)→ Tot1(X•)→ Tot0(X•) ' X ⊗ E,

called the Adams tower for X with respect to E. There is a canonical map X → Tot(X•). We ask how
closely this map approximates a homotopy equivalence.

The first observation is that X• depends only on the localization LEX: any E-homology equivalence
X → Y induces a homotopy equivalence of cosimplicial spectra X• → Y •. On the other hand, TotX• is a
homotopy inverse limit of E-modules, and is therefore automatically E-local. The best possible situation,
then, is that TotX• is an E-localization of X: equivalently, the map X → TotX• induces an isomorphism
in E-homology. This is equivalent to the assertion that E ⊗X → E ⊗ (TotX•) is a homotopy equivalence.
The right hand side also admits a map to Tot(E ⊗X•). The augmented cosimplicial object [n] 7→ E ⊗X ⊗
(E⊗(n+1)) is split: that is, it admits an extra codegeneracy map. It follows formally that the composite map

E ⊗X → E ⊗ TotX• → Tot(E ⊗X•)

is a homotopy equivalence. Consequently, we obtain the following:

Proposition 1. Let E be a structured ring spectrum and X a spectrum. Then the canonical map X → TotX•

exhibits TotX• as an E-localization of X if and only if E ⊗ TotX• ' Tot(E ⊗X•).

Note that Tot(E⊗X•) ' lim←−Totn(E⊗X•). Each partial totalization Totn is given by a finite homotopy
inverse limit, and therefore commutes with smash products. It follows that Tot(E ⊗X•) can be identified
with lim←−E⊗Totn(X•). Consequently, the condition of Proposition 1 can be restated as follows: the canonical
map

E ⊗ lim←−Totn(X•)→ lim←−E ⊗ Totn(X•)

is a homotopy equivalence.
To understand this condition better, it is convenient to work in the setting of pro-spectra. A pro-spectrum

is a formal inverse limit “ lim←−X
′′
α of a filtered diagram of spectra (for our needs, it will be sufficient to consider

inverse limits of towers). Morphism spaces are computed by the formula

Map(“ lim←−X
′′
α, “ lim←−Y

′′
β ) = lim←−

β

lim−→
α

Map(Xα, Yβ).

The collection of all pro-spectra form a homotopy theory, which we will denote by Pro(Sp). There is a
forgetful functor U : Pro(Sp)→ Sp, which carries a diagram “ lim←−X

′′
α to its homotopy inverse limit lim←−Xα.

We say that a pro-spectrum “ lim←−X
′′
α is constant if, in Pro(Sp), it is homotopy equivalent to a constant tower

· · ·X → X → X.
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In this case, we have a canonical equivalence lim←−Xα ' X.
If “ lim←−X

′′
α is a pro-spectrum and E is any spectrum, then we can define a new prospectrum E⊗“ lim←−X

′′
α =

“ lim←−E ⊗X
′′
α. We then have a natural map E ⊗U(′′lim←−X

′′
α)→ U(E ⊗ “ lim←−X

′′
α). This map is not always an

equivalence, but it is obviously an equivalence when “ lim←−X
′′
α is constant. Applying this to our situation, we

obtain the following:

Proposition 2. The equivalent conditions of Proposition 1 are satisfied whenever the tower

· · · → Tot2X• → Tot1X• → Tot0X•

is constant as a pro-spectrum.

Consequently, it is of interest for us to have a criterion for determining when a tower of spectra

· · · → Y (2)→ Y (1)→ Y (0)

is constant as a pro-spectrum. Recall that any such tower determines a spectral sequence {Ep,qr , dr}, which
(in good cases) converges to πq lim←−Y (n). Our goal is to establish the following criterion (a very imprecise
version of a criterion of Bousfield):

Proposition 3 (Bousfield). Let · · · → Y (2)→ Y (1)→ Y (0) be a tower of spectra. Suppose that there exists
an integer s ≥ 1 with the following property: for every finite spectrum F , if {Ep,qr , dr} is the spectral sequence
associated to the tower

· · · → F ⊗ Y (2)→ F ⊗ Y (1)→ F ⊗ Y (0),

then the groups Ep,qs vanish for p ≥ s. Then the tower · · · → Y (2) → Y (1) → Y (0) is constant as a
pro-object.

To prove Proposition 3, we begin by fixing a tower of spectra

· · ·Y (2)→ Y (1)→ Y (0)

and assume that the associated spectral sequence {Ep,qr } satisfies Ep,qs ' 0 for p ≥ s. To exploit this
hypothesis, we need to recall the details of the definition of the spectral sequence {Ep,qr , dr}. For m ≤ n let
F (m,n) denote the homotopy fiber of the map Y (n)→ Y (m) (here we adopt the convention that Y (m) ' 0
for m < 0). Then Ep,qr is defined as the image of the map πqF (p + r − 1, p − 1) → πqF (p, p − r), and the
differential dr carries Ep,qr into Ep+r,q−1

r . If p < 0, then F (p, p− r) is contractible so that Ep,qr automatically
vanishes. If p ≥ s, then Ep,qr vanishes for r ≥ s by assumption. It follows that if r ≥ s, then at least one of
the groups Ep,qr and Ep+r,q−1

r vanishes, so that the differential dr is identically zero. This proves:

(∗) The groups Ep,qr are independent of r for r ≥ s. That is, the spectral sequence {Ep,qr , dr} collapses at
the s-page.

Now suppose r > p. Since F (p, p− r) ' Y (p), we have πqF (p, p− r) ' πqY (p). In this case, Ep,qr is the
image of the composite map

πqF (p+ r − 1, p− 1)→ πqY (p+ r − 1)→ πqY (p).

The image of the first map is the kernel of the map πqY (p+ r − 1)→ πqY (p− 1). We therefore have:

(∗′) For r > p, the group Ep,qr is the intersection Im(πqY (p+r−1)→ πqY (p))∩ker(πqY (p)→ πqY (p−1)).

Combining (∗) and (∗′), we deduce:

(∗′′) The intersection Im(πqY (p + r) → πqY (p)) ∩ ker(πqY (p) → πqY (p − 1) is independent of r, provided
that r ≥ p, s.
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Lemma 4. For every integer k ≥ 0, the intersection Im(πqY (p+ r)→ πqY (p))∩ker(πqY (p)→ πqY (p− k))
is independent of r, provided that r ≥ p, s.

Proof. We use induction on k. The case k = 0 is trivial, so assume that k > 0. Suppose that r ≥ p, s, and
that x ∈ πqY (p + r) has trivial image in πqY (p − k). Let y ∈ πqY (p) be the image of x; we wish to show
that y lifts to πqY (p + r + 1). Let y′ denote the image of y in πqY (p − 1). Then y′ belongs the kernel of
the map πqY (p− 1)→ πqY (p− k). Since y′ lifts to πqY (p+ r), the inductive hypothesis implies that y′ can
be lifted to an element x′ ∈ πqY (p+ r + 1). Subtracting the image of x′ from x, we can reduce to the case
y′ = 0. Then y ∈ ker(πqY (p)→ πqY (p− 1)), and the desired result follows from (∗′′).

Taking k = p+1 in Lemma 4, we deduce that the image of the map π∗Y (p+ r)→ π∗Y (p) is independent
of r, so long as r ≥ p, s. Let us denote this image by A(p)∗. By construction, we have a sequence of
surjections

· · ·A(3)∗ → A(2)∗ → A(1)∗ → A(0)∗.

By construction, each of these surjections fits into a short exact sequence

0→ Ep,∗∞ → A(p)∗ → A(p− 1)∗ → 0

By assumption, the groups Ep,∗∞ vanish for p ≥ s. We deduce:

(∗′′′) The maps A(p)∗ → A(p′)∗ are isomorphisms for p ≥ p′ ≥ s.

Let us now consider the tower of graded abelian groups

· · · → π∗Y (4s) θ2→ π∗Y (2s) θ1→ π∗Y (s).

For m ≥ 0, let K(m)∗ ⊆ π∗Y (2ms) be the kernel of the map θm. Note that K(m)∗ ∩ A(2ms)∗ = 0,
since each θm induces an isomorphism A(2ms)∗ → A(2m−1s)∗. For any class x ∈ π∗Y (2ms), the image
θm(x) ∈ A(2m−1s)∗, so that θm(x) = θm(x′) for some x′ ∈ A(2ms)∗. It follows that x = x′ + x′′, where
x′ ∈ A(2ms)∗ and x′′ ∈ K(m)∗. In other words, for m ≥ 1 we have a direct sum decomposition

π∗Y (2ms) ' A(2ms)∗ ⊕K(m)∗.

It follows that, as a pro-object in graded abelian groups, the tower {π∗Y (2ms)} is equivalent to the constant
group A(s)∗.

Let Y = lim←−Y (p) ' lim←−m Y (2ms). The Milnor exact sequence

0→
1

lim←−π∗+1Y (p)→ π∗Y → lim←−π∗Y (p)→ 0

gives π∗Y ' A(s)∗. For each integer p ≥ 0, let Y (p)/Y denote the cofiber of the canonical map Y → Y (p).
It follows that the maps π∗Y (2ms)→ π∗Y (2ms)/Y induce a composite isomorphism

K(m)∗ ⊆ π∗Y (2ms)→ π∗Y (2ms)/Y.

We conclude that the tower of spectra

· · · → Y (4s)/Y → Y (2s)/Y → Y (s)/Y

has the following property: each map in the tower is trivial on all homotopy groups.
Let us now return to the setting of Proposition 3: that is, we assume that the spectral sequence {Ep,qr , dr}

has vanishing Ep,qs for p ≥ s not only for the tower {Y (p)}, but also for {Y (p)⊗F} for every finite spectrum
F . The same reasoning shows that the maps

· · · → (Y (4s)/Y )∗ → (Y (2s)/Y )∗F → (Y (s)/Y )∗F

are zero. In other words, each of the maps Y (2ms)/Y → Y (2m−1s)/Y is a phantom.
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Lemma 5. A composition of two phantom maps is zero.

Proof. Fix a spectrum X, and consider a map u :
⊕
Fα → X, where the sum ranges over all homotopy

equivalence classes of maps from finite spectra into X. Using the argument given in Lecture 17, we see that
the homotopy fiber X ′ of u is equivalent to a retract of a sum of finite spectra. Now suppose we are given
phantom maps f : X → Y and g : Y → Z. Since f is a phantom, f ◦ u ' 0 and therefore f is equivalent to
a composition X → ΣX ′ → Y . Consequently, g ◦ f factors through the composition ΣX ′ v→ Y

g→ Z. Since
g is a phantom and ΣX ′ is a retract of a sum of finite spectra, the composition g ◦ v is nullhomotopic and
therefore g ◦ f ' 0.

Applying this to our situation, we deduce that the maps

· · · → Y (16s)/Y → Y (4s)/Y → Y (s)/Y

are nullhomotopic, so that the pro-spectrum {Y (p)/Y } is trivial. This proves that the tower {Y (p)} is
equivalent (as a pro-spectrum) to the constant spectrum Y .
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The Smash Product Theorem (Lecture 31)

April 22, 2010

In this lecture, we will apply the results of Lecture 30 to prove (part of) the smash product theorem.
We begin by summarizing the results of the previous lecture. Fix a ring spectrum E (which we take to be a
structured ring spectrum for simplicity). For every specturm X, we let X• denote the cosimplicial spectrum
[n] 7→ E⊗n+1 ⊗X.

Proposition 1. Let E be a ring spectrum and X an arbitrary spectrum. Suppose that there exists an integer
s ≥ 1 such that, for every finite spectrum F , the E-based Adams spectral sequence {Ep,q

r , dr} for X ⊗ F has
Ep,q

s ' 0 for p ≥ s. Then the Adams tower {TotnX•} is equivalent, as a pro-object, to a constant tower.

In the situation of Proposition 1, we have an equivalence of pro-spectra {TotnX•} ' X ′ for some
spectrum X ′. We saw in the last lecture that X ′ ' Tot(X•) can be identified with the localization LEX.
Note that if the hypotheses of Proposition 1 are satisfied, then for every other spectrum Y , the tower
{Totn(X⊗Y )•} ' {TotnX•⊗Y } is pro-equivalent to the constant tower with value X ′⊗Y . It follows that
the canonical map

(LEX)⊗ Y → LE(X ⊗ Y )

is a homotopy equivalence.

Proposition 2. Let E be a p-local ring spectrum, and suppose that there exists a finite p-local spectrum X
of type 0 which satisfies the hypotheses of Proposition 1. Then LE is a smashing localization.

Proof. Let T be the collection of p-local finite spectra X such that, for every p-local spectrum Y , the canonical
map (LEX) ⊗ Y → LE(X ⊗ Y ) is an equivalence. It is clear that T is thick. If T contains a finite p-local
spectrum of type 0, then the thick subcategory theorem implies that T contains every finite p-local spectrum;
in particular, S(p) ∈ T so that LES(p) ⊗ Y ' LE(Y ) for all Y and therefore LE is smashing.

Let us now specialize to the case where E is Morava E-theory E(n). The spectrum E(n) is complex-
oriented, and the map Specπ∗E → MFG×Spec Z(p) is a faithfully flat cover of the open substack M

≤n
FG

classifying formal groups of height ≤ n. For every spectrum X, let FX denote the associated quasi-coherent
sheaf on MFG. The E2-term of the E(n)-based Adams-Novikov spectral sequence for X is given by the
cohomology of the chain complex

E(n)∗(X)→ (E(n)⊗ E(n))∗X → (E(n)⊗ E(n)⊗ E(n))∗X → · · · ,

which computes the cohomology of M
≤n
FG with coefficients in the quasi-coherent sheaves FΣkX for varying k.

Consequently, we obtain the following:

Proposition 3. Suppose that there exists a finite p-local spectrum X of type 0 and an integer s0 ≥ 1 with the
following property: for every finite spectrum F , the cohomology groups Hs(M≤n

FG; FX⊗F ) vanish for s ≥ s0.
Then the localization LE(n) is smashing.
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To make things more concrete, let us assume that X is an even finite p-local spectrum: that is, a finite
p-local spectrum whose homology groups H∗(X; Z(p)) are free Z(p)-modules concentrated in even degrees.
This is equivalent to saying that X admits a finite cell decomposition, where each cell is an even suspension
of S(p). Such a spectrum is always of type 0, provided that it is nonzero. For such a spectrum, the Atiyah-
Hirzebrucn spectral sequence for computing (MU(p))∗(X) degenerates: that is, MU(p)⊗X is a free module
over MU(p) (on generators corresponding to some basis for H∗(X; Z(p))). It follows that FX is a vector
bundle on MFG× Spec Z(p), and that for any other spectrum F we have

(MUp)∗(X ⊗ F ) ' π∗((MU(p)⊗X)⊗MU(p) (MU(p)⊗F )) ' (MU(p))∗(X)⊗MU(p) (MU(p))∗F.

On the moduli stack MFG, we deduce that the canonical map of quasi-coherent sheaves

FX ⊗FF → FX⊗F

is an isomorphism after localization at p. We conclude the following:

Proposition 4. Suppose that there exists a nonzero finite even p-local spectrum X and an integer s0 with the
following property: for every quasi-coherent sheaf G on M

≤n
FG, the cohomology groups Hs(M≤n

FG; (FX |M≤n
FG)⊗G)

vanish for s ≥ s0. Then the localization functor LE(n) is smashing.

We can attack this problem using the filtration of M
≤n
FG by height. Suppose we have chosen an even

finite p-local spectrum X. For each k ≤ n, let M
≥k,≤n
FG denote the closed substack of M

≤n
FG classifying formal

groups which have height ≥ k. Let us attempt to prove that, for every quasi-coherent sheaf G on M
≥k,≤n
FG ,

the groups Hs(M≥k,≤n
FG ; (FX |M≥k,≤n

FG )⊗G) vanish for large s. The idea is to use descending induction on k.
Note that M

≥k+1,≤n
FG can be regarded as a closed substack of M

≥k,≤n
FG : it is the zero locus of vk, which we

regard as a section of ωpk−1 (here ω is the line bundle on MFG given by assigning to each formal group the
dual of its Lie algebra). In particular, multiplication by vn induces a map of sheaves

G→ G⊗ωpk−1

whose kernel and cokernel are supported on the closed substack M
≥k+1,≤n
FG . We may therefore assume, by

our inductive hypothesis, that vn induces an isomorphism

Hs(M≥k,≤n
FG ; (FX |M≥k,≤n

FG )⊗ G)→ Hs(M≥k,≤n
FG ; (FX |M≥k,≤n

FG )⊗ G⊗ωpk−1)

for sufficiently large s. It follows that for large s, we have an isomorphism

Hs(M≥k,≤n
FG ; (FX |M≥k,≤n

FG )⊗ G) ' lim−→
m

Hs(M≥k,≤n
FG ; (FX |M≥k,≤n

FG )⊗ G⊗ω(pk−1)m);

here the latter group can be identified with the cohomology of FX ⊗G on the open substack of M
≥k,≤n
FG

complementary to M
≥k+1,≤n
FG : this is the moduli stack of formal groups of height exactly k. We are therefore

reduced to the following:

Proposition 5. Suppose that there exists a nonzero finite even p-local spectrum X and an integer s0 with
the following property: for 0 ≤ k ≤ n and every quasi-coherent sheaf G on Mk

FG, the cohomology groups
Hs(Mk

FG; (FX |Mk
FG)⊗ G) vanish for s ≥ s0.

The vanishing condition appearing in Proposition 6 is automatic when k = 0, since quasi-coherent sheaves
on M0

FG ' BGm have no higher cohomology. Assume that k > 0, and choose a formal group law f(x, y) of
height k over Fp. Let Gk denote the automorphism group of f (as a formal group law over Fp), regarded as
a profinite group. We have a pullback diagram of algebraic stacks

BGk × Spec Fp
//

��

Mk
FG

��
Spec Fp

// Spec Fp.

2



This implies:

(a) Every quasi-coherent sheaf F on Mk
FG determines an Fp-vector space V equipped with a continuous

action of Gk.

(b) We have a canonical isomorphism H∗(Mk
FG; F)⊗Fp

Fp ' H∗(Gk;V ).

Consequently, we are reduced to proving the following:

Proposition 6. Suppose that there exists a nonzero finite even p-local spectrum X and an integer s0 with the
following property: for 1 ≤ k ≤ n, if we let V denote the representation of the profinite group Gk associated
to FX , then Hs(Gk;V ⊗W ) ' 0 for s ≥ s0 and any continuous representation W of Gk. Then LE(n) is a
smashing localization.

Let us now indicate briefly why it is plausible that the hypothesis of Proposition 6 should be satisfied.
Fix 1 ≤ k ≤ n. Recall that Gk can be described as the group of units in the ring End(f), which is a
noncommutative valuation ring of rank k2 over Zp. In particular, it is a p-adic Lie group. Consequently, on
a sufficiently small open subgroup of Gk, the group structure on Gk closely approximates the (commutative)
group structure on Zk2

p . If M is a discrete p-torsion module over Zk2

p , then the profinite group cohomology
Zk2

p with coefficients in M agrees with the ordinary group cohomology of Zk2
with coefficients in M , and

therefore vanishes in degrees larger than k2. Using this, Lazard shows that there is an open subgroup U ⊆ Gk

such that Hs(U ;M) vanishes for s > k2 and any Gk-module M . The same result does not necessarily hold
when U = Gk. However, an argument of Serre shows that if Gk is not of finite cohomological dimension,
then it must contain an element of order p. However, elements of order p are well-understood: these are
pth roots of unity in the division algebra D = End(f)[p−1], and they exist only when the rank k of D is
divisible by the degree (p − 1) of the field extension Qp(ζp). In particular, if p > n + 1, then the profinite
groups {Gk}1≤k≤n have finite cohomological dimension and the hypotheses of Proposition 6 are satisfied for
X = S(p).

When p ≤ n, we need to work harder. In this case, some of the groups Gk do contain elements of order
p. However, each Gk contains at most a single conjugacy class of subgroups V having order p: this follows
from the Skolem-Noether theorem. In this case, the subgroup V can be regarded as the “obstruction” to Gk

being of finite cohomological dimension: one can show that the cohomology groups H∗(Gk;M) are bounded
if the subgroup V acts freely on M . It therefore suffices to choose a spectrum X such that the associated
representation V of Gk is free over V . This requires some representation-theoretic constructions which we
will not pursue further.
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The Chromatic Convergence Theorem (Lecture 32)

April 20, 2010

Fix a prime number p. For any p-local spectrum X, one can arrange its E(n)-localizations into the
chromatic tower

· · · → LE(2)X → LE(1)X → LE(0)X.

Our goal in this lecture and the next is to prove the following result:

Theorem 1 (Chromatic Convergence). If X is a finite p-local spectrum, then X is a homotopy limit of its
chromatic tower.

Remark 2. The collection of p-local spectra which satisfy the conclusion of Theorem 1 is obviously thick.
It therefore suffices to prove Theorem 1 for a single p-local spectrum of type 0: for example, the p-local
sphere).

For every spectrum X, let Cn(X) denote the homotopy fiber of the map X → LE(n)X. Then lim←−Cn(X) is
the homotopy fiber of the map X → lim←−LE(n)X. The chromatic convergence theorem is therefore equivalent
to the following:

Theorem 3. The homotopy limit of the tower {Cn(S(p))} is trivial. Even better: for every integer m, the
tower of abelian groups {πmCn(S(p))} is trivial (as a pro-abelian group).

The starting point for Theorem 3 is the following result, which we will prove in the next lecture:

Proposition 4. Each of the maps Cn(S(p))→ Cn−1(S(p)) induces the zero map MU∗(Cn(S(p)))→ MU∗(Cn−1(S(p)).

Let us assume Proposition 4 and see how it leads to a proof of Theorem 3. To this end, we recall the
definition of the Adams-Novikov filtration on the homotopy groups π∗X of a spectrum X. Let I denote the
homotopy fiber of the unit map S → MU. There is an evident map I → S, which induces a map I⊗m → S
for each m. We say that an element x ∈ πnX has Adams-Novikov filtration ≥ m if x lies in the image of the
map πn(I⊗m ⊗X)→ πnX.

Lemma 5. Let f : X → Y be a map of spectra such that f induces the zero map θ : MU∗(X) → MU∗(Y ).
Then f increases Adams-Novikov filtration. That is, if x ∈ πnX has Adams-Novikov filtration ≥ m, then
f(x) ∈ πnY has Adams-Novikov filtration ≥ m+ 1.

Proof. Lift x to a class x ∈ πn(I⊗m ⊗ X). We then obtain f(x) ∈ πn(I⊗m ⊗ Y ) lifting y. To lift y to
πn(I⊗m+1 ⊗ Y ), it suffices to show that the image of y vanishes in I⊗m ⊗ Y ⊗MU. Consequently, it will
suffice to show that f induces the zero map

θm : MU∗(I⊗m ⊗X)→ MU∗(I⊗m ⊗ Y ).

Recall that MU∗(MU) ' (π∗ MU)[b1, b2, . . .] is a free π∗ MU-module on a basis consisting of monomials in
the bi. It follows that MU∗(ΣI) is a free π∗ MU-module on a basis consisting of monomials of positive length
in the bi. In particular, MU⊗I is a free module over MU, so we have Kunneth decompositions

MU∗(I⊗m ⊗X) = MU∗(I)⊗m ⊗π∗ MU MU∗(X)

MU∗(I⊗m ⊗ Y ) = MU∗(I)⊗m ⊗π∗ MU MU∗(Y )

Since θ = 0, it follows that θm = 0.
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Combining Lemma 5 with Proposition 4, we deduce:

Proposition 6. For all m, n, and s, the image of the map

πnCm+sS(p) → πnCmS(p)

consists of elements having Adams-Novikov filtration ≥ s.

To complete the proof of Theorem 3, it will suffice to show the following:

Proposition 7. For every pair of integers m and n, the Adams-Novikov filtration on πnCm(S(p)) is finite.
That is, there exists an integer s such that every element x ∈ πnCm(S(p)) of Adams-Novikov filtration ≥ s
is trivial.

Let us now introduce some terminology which will be useful for proving Proposition 7.

Definition 8. Let f : X → Y be a map of spectra. We say that f is phantom below dimension n if the
following condition is satisfied: for every finite spectrum F of dimension ≤ n and every map u : F → X, the
composition f ◦ u is nullhomotopic.

Remark 9. The map f is phantom if and only if it is phantom below dimension n, for every integer n.

Definition 10. A spectrum X is MU-convergent if, for every integer n, there exists s such that the map
I⊗s ⊗X → X is phantom below dimension n.

If X is MU-convergent and n, s are as in Definition 10, then the map I⊗s⊗X → X is trivial on πn and so
every element of πnX having Adams-Novikov filtration ≥ s is zero. Proposition 7 is therefore a consequence
of the following:

Proposition 11. Let X be any connective spectrum. Then Cm(X) is MU-convergent for each m ≥ 0.

We need a few preliminary observations.

Lemma 12. Let f : X → Y phantom below dimension n, and let W be a connective spectrum. Then the
induced map X ⊗W → Y ⊗W is phantom below dimension n.

Proof. Let F be a finite spectrum of dimension ≤ n and consider a map u : F → X ⊗W . We wish to prove
that (f ⊗ idW ) ◦ u is nullhomotopic. We can write W as a filtered colimit of finite connective spectra Wα.
Since F is finite, u factors through X ⊗Wα for some α. Replacing W by Wα, we may assume that W is
finite. In this case, we can identify u with a map v : DW ⊗ F → X. Since W is connective, DW ⊗ F has
dimension ≤ n; it follows that f ◦ v is nullhomotopic so that (f ⊗ idW ) ◦ u is nullhomotopic.

Lemma 13. Suppose we are given a fiber sequence of spectra

X → Y → Z.

If X and Z are MU-convergent, then Y is MU-convergent.

Proof. Fix an integer n, and choose s such that the maps I⊗s ⊗X → X and K⊗s ⊗ Z → Z are phantom
below n. We will show that the map I⊗2s ⊗ Y → Y is phantom below n. Let F be a finite spectrum of
dimension ≤ n with a map u : F → I⊗2s ⊗ Y . Since I⊗2s ⊗ Z → I⊗s ⊗ Z is phantom below n (Lemma 12),
the composite map

F → I⊗2s ⊗ Y → I⊗2s ⊗ Z → I⊗s ⊗ Z

is nullhomotopic. It follows that the composition

F ⊗ I⊗2s ⊗ Y → I⊗s ⊗ Y
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factors through some map v : F → I⊗s ⊗X. Then the composition

F
u→ I⊗2s ⊗ Y → Y

is given by
F

v→ I⊗s ⊗X → X → Y

and is therefore nullhomotopic.

Lemma 14. Let X be an MU-module spectrum. Then X is MU-convergent.

Proof. The unit map X → MU⊗X admits a section, given by the action of MU(p) on X. This is equivalent
to the statement that the map I ⊗X → X is nullhomotopic (and hence phantom below n, for any n).

Lemma 15. Let X be any spectrum. For each n ≥ 0, the spectrum LE(n)X is MU-convergent.

Proof. Let X• = E(n)⊗(•+1) ⊗X and let {TotmX•} be the E(n)-based Adams tower of X. The proof of
the smash product theorem shows that {TotmX•} is equivalent to the constant tower with value LE(n)X. It
follows that LE(n)X is a retract of TotmX• for some m. It therefore suffices to show that each TotmX• is
MU-convergent. Each TotmX• is a finite homotopy inverse limit of the spectra Xk; by Lemma 13 it suffices
to show that each Xk is MU-convergent. But Xk ' E(n)⊗k+1 ⊗ X has the structure of an E(n)-module
spectrum. Since E(n) is complex orientable, there is a map of ring spectra MU→ E(n) so that Xk admits
an MU-module structure; the desired result now follows from Lemma 14.

Lemma 16. Let X be a connective spectrum. Then X is MU-convergent.

Proof. We claim that for any finite CW complex F of dimension ≤ n and any map u : F → I⊗n+1 ⊗ X,
the composite map u : F → I⊗n+1 ⊗ X → X is nullhomotopic. In fact, u itself is nullhomotopic, because
I⊗n+1 ⊗X is n-connected. To check this, we note that since X is connective it suffices to show that K is
connected: that is, we have πiK ' 0 for i ≤ 0. This follows from the long exact sequence associated to the
fiber sequence

I → S → MU,

since the map πiS → MU is bijective for i ≤ 0 and surjective when i = 1.

Proof of Proposition 11. Let X be a connective spectrum. We have a fiber sequence

Cn(X)→ X → LE(n)X

where X is MU-convergent by Lemma 16 and LE(n)(X) is MU-convergent by Lemma 15. It follows from
Lemma 13 that Cn(X) is MU-convergent.
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Complex Bordism and E(n)-Localization (Lecture 33)

April 22, 2010

Our first goal in this lecture is to complete the proof of chromatic convergence theorem by verifying the
following:

Proposition 1. For each n, let Cn(S(p)) denote the homotopy fiber of the localization map S(p) → LE(n)S(p).
Then the maps MU∗ Cn(S(p))→ MU∗ Cn−1(S(p)) are equal to zero.

We will prove this result by explicitly computing the complex bordism of each CnS(p). First, let us
establish a bit of notation. Let L = π∗ MU be the Lazard ring. For each n ≥ 0, let I(n) denote the ideal
generated by (v0, v1, . . . , vn−1, vn) in L. We will say that an L-module M is I(n)-torsion if every every
element x ∈M is annihilated by some power of the ideal I(n). The basis for our calculation is the following.

Proposition 2. Let X be an MU-module spectrum whose homotopy groups π∗X are an I(n − 1)-torsion
module, and let n > 0. Let X[v−1

n ] be the spectrum obtained by inverting vn ∈ π2(pn−1) MU. Then the map
X → X[v−1

n ] exhibits X[v−1
n ] as an E(n)-localization of X.

Lemma 3. Let Y be an MU-module spectrum such that π∗Y is an I(n)-torsion L-module. Then Y is
E(n)-acyclic.

Proof. We have MU∗ Y ' (MU∗ MU)⊗π∗ MUπ∗Y . Note that the two maps φ1, φ2 : L→ MU∗ MU carry I(n)
to the same ideal, since the condition that a formal group be of height > n does not depend on the choice
of coordinate. It follows that MU∗ Y is an I(n)-torsion L-module. Since E(n) is Landweber exact, we get
E(n)∗Y ' π∗E(n) ⊗L MU∗ Y . Since I(n) generates the unit ideal in E(n) (the formal group associated to
E(n) has height ≤ n), we conclude that every element of E(n)∗Y is generated by a power of the unit ideal
in π∗E(n): that is, E(n)∗Y ' 0.

Proof of Proposition . We must show two things:

(1) The spectrum X[v−1
n ] is E(n)-local.

(2) The map X → X[v−1
n ] is an equivalence in E(n)-homology.

To prove (1), we observe that X[v−1
n ] is a module spectrum for MU(p)[v−1

n ], and therefore E(n)-local since
E(n) is Bousfield equivalent to MU(p)[v−1

n ].
To prove (2), it suffices to show that the homotopy fiber of the map X → X[v−1

n ] is E(n)-acyclic. This
homotopy fiber is a filtered colimit of the cofibers of maps

X
vk

n→ Σ−2k(pn−1)X.

It therefore suffices to show that the homotopy fibers of each of these maps is E(n)-acyclic. Denote such a
homotopy fiber by Y ; then Y is an MU-module such that π∗Y is I(n)-torsion, so that Y is E(n)-acyclic by
Lemma 3.
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Proposition 4. For each n ≥ 0, let Mn be the L-module given by the quotient of L(p)[v−1
0 , . . . , v−1

n ] by
the submodules {L(p)[v−1

0 , . . . , v−1
i−1, v

−1
i+1, . . . , v

−1
n ]}0≤i≤n. Then there are canonical isomorphisms M(n) '

MU∗ CnS(p).

Remark 5. The L-modules M(n) can be described by recursion: we have M(−1) ' L(p), and for n ≥ 0
there is an isomorphism M(n) 'M(n− 1)[v−1

n ]/M(n− 1).

Proof. We use induction on n, beginning with the case n = 0. Note that C0S(p) is the fiber of the map
S(p) → LE(0)S(p) = SQ. It follows that MU⊗C0S(p) is the fiber of the map MU(p) → MUQ. This map is
injective on homotopy, so we get a short exact sequence

0→ π∗ MU(p) → π∗ MUQ → MU∗ C0S(p) → 0,

giving the isomorphism MU∗ C0S(p) ' L(p)[p−1]/L(p).
The general case is similar. We have a fiber sequence

Cn−1S(p) → S(p) → LE(n−1)S(p).

Note that LE(n−1)S(p) is already E(n)-local, so that Cn(LE(n−1)S(p)) ' 0. Applying Cn, we deduce that
the map CnCn−1S(p) → CnS(p) is an equivalence. In other words, we have a fiber sequence

CnS(p) → Cn−1S(p) → LE(n)Cn−1S(p).

The inductive hypothesis implies that MU∗(Cn−1S(p)) is an I(n − 1)-torsion L-module. It follows from
Proposition that

MU∗ LE(n)Cn−1S(p) 'MU∗(Cn−1S(p))[v−1
n ] 'M(n− 1)[v−1

n ].

We observe that the map M(n− 1)→M(n− 1)[v−1
n ] is injective. This implies that the map MU∗ CnS(p) →

MU∗ Cn−1S(p) is zero (thereby proving Theorem 1), and shows that we have a short exact sequence

0→M(n− 1)→M(n− 1)[v−1
n ]→ MU∗ CnS(p) → 0,

giving the isomorphism MU∗ CnS(p) 'M(n).

Proposition can also be used to get a bound on the discrepancy between LE(n) and the telescopic
localization functor Ltn.

Proposition 6. Let X be any spectrum. Then the canonical map LtnX → LE(n)X induces an isomorphism
after smash product with MU.

Proof. We work by induction on n. We wish to prove that the map

MU⊗LtnX → MU⊗LE(n)X ' LE(n)(MU⊗X)

is an equivalence: that is, the map φ : MU⊗X → MU⊗LtnX exhibits MU⊗LtnX as an E(n)-localization of
X. Since φ is obviously an E(n)-equivalence, it suffices to show that MU⊗LtnX is E(n)-local. We have a
cofiber sequence

Y → X → Ltn−1X.

The inductive hypothesis implies that Ltn(MU⊗Ltn−1X) ' MU⊗Ltn−1X is E(n − 1)-local, and therefore
E(n)-local. It therefore suffices to show that MU⊗LtnY is E(n)-local By construction, Y is a direct limit of
finite p-local spectra Yα of type ≥ n; since LE(n) is smashing, it suffices to show that each MU⊗LtnYα is MU-
local. Since Yα has type ≥ n, MU∗ Yα is an I(n−1)-torsion L-module, so that MU∗ LE(n)Yα ' (MU∗ Yα)[v−1

n ]
by Proposition . On the other hand, we have seen that LtnYα ' Yα[f−1], where f−1 is a vn-self map of Y .
To conclude that MU∗ LtnYα ' (MU∗ Yα)[v−1

n ], it suffices to prove the following:
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Lemma 7. Let Z be a finite p-local spectrum of type ≥ n, and let f : ΣkZ → Z be a vn-self map of Z.
Then, replacing f by a suitable power, we may assume that f induces the map vin on MU∗ Z (for some i).

Proof. Let R = Z ⊗DZ, and regard f as an element of π∗R. Raising f to a suitable power, we may assume
that f 7→ 0 ∈ K(m)∗R for m 6= n and f 7→ vin ∈ K(n)∗R. We claim that fp

k

= vip
k

n in MU∗(R) for k � 0.
Since vin and f commute in MU∗R (vn being central) and the difference vin − f is p-power torsion (since
π∗R is p-power torsion), it suffices to show that vin− f is nilpotent. By the nilpotence theorem, it suffices to
show that the image of (vin − f) 7→ 0 ∈ K(m)∗(MU⊗R) for all m. This is clear for m < n (since MU⊗R is
K(m)-acyclic). For m ≥ n, we note that vn ∈ π∗ MU maps to 0 in K(m)∗ MU for m > n (since the formal
group law of K(m) ⊗MU has height > n), so the statement holds since f 7→ 0 ∈ K(m)∗R. In the case
m = n, we are reduced to proving that the two images of vn in K(m)∗ MU coincide. This is clear: since
K(n)⊗MU is a cohomology theory with two complex orientations, the associated formal group laws (each
of which has height ≥ n) differ by a change of coordinates of the form f(t) = t + b1t

2 + b2t
3 + · · · , so that

the first nonvanishing coefficient of the p-series [p](t) are the same.
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Monochromatic Layers (Lecture 34)

April 27, 2010

Fix a prime number p. To any spectrum X, we can associate its chromatic tower

· · · → LE(2)X → LE(1)X → LE(0)X.

If X is a finite p-local spectrum, then the chromatic convergence theorem tells us that the homotopy limit
of this tower is X. In particular, we can associate to X the chromatic spectral sequence {Ep,qr , dr}, where
Ep,∗1 is given by the homotopy groups of the homotopy fiber of the map LE(p)X → LE(p−1)X. (In fact, the
proof of the chromatic convergence theorem tells us that this spectral sequence converges in a strong sense:
for example, the chromatic filtration on each homotopy group πnX is finite). This motivates the following:

Definition 1. For each spectrum X, we let Mn(X) denote the homotopy fiber of the map LE(n)X →
LE(n−1)X. We will refer to Mn(X) as the nth monochromatic layer of X.

The essential features of Mn(X) are captured by the following definition:

Definition 2. A spectrum X is monochromatic of height n if it is E(n)-local and E(n− 1)-acyclic.

Remark 3. For any spectrum X, we have a map of E(n)-local spectra LE(n)X → LE(n−1)X which induces
an isomorphism on E(n − 1)-homology. It follows that the fiber Mn(X) is monochromatic of height n.
Conversely, if X is monochromatic of height n, then LE(n)X ' X and LE(n−1)X ' 0, so that X 'Mn(X).

Example 4. Let X be a finite p-local spectrum of type ≥ n. Then LE(n)X is monochromatic of height n.
To see this, it suffices to observe that E(n− 1)∗LE(n)X ' E(n− 1)∗X ' 0.

Notation 5. Let Mn denote the collection of all spectra which are monochromatic of height n. Since LE(n)

is a smashing localization, we see that Mn is closed under homotopy colimits. We say that that an object
X ∈Mn is compact if, for every filtered diagram {Yα} of objects of Mn, the induced map

lim−→Map(X,Yα)→ Map(X, lim−→Yα)

is a homotopy equivalence.

Example 6. Let X be a finite p-local spectrum of type ≥ n. Then LE(n)X is a compact object of Mn. To
see this, we note that if {Yα} is a filtered diagram in Mn, then we have

Map(LE(n)X, lim−→Yα) ' Map(X, lim−→Yα) ' lim−→Map(X,Yα) ' lim−→Map(LE(n)X,Yα).

Our next goal is to establish a converse to Example 6. The essential observation is the following:

Proposition 7. Let X be a spectrum which is monochromatic of height n. Then X can be written as a
filtered colimit lim−→Xα, where each Xα is the E(n)-localization of a finite spectrum of type ≥ n.
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Proof. We have a cofiber sequence
X ′ → X → Ltn−1X,

where X ′ is a filtered colimit of p-local finite spectra of type ≥ n. This induces a cofiber sequence

LE(n)X
′ → LE(n)X → LE(n)L

t
n−1X.

Since X ∈ Mn we have LE(n)X ' 0, and since LE(n) is smashing we conclude that LE(n)X
′ is a filtered

colimit of E(n)-localizations of finite p-local spectra of type ≥ n. It will therefore suffice to show that
LE(n)L

t
n−1X ' 0; that is, that Ltn−1X is E(n)-acyclic. Since E(n) is Landweber exact, it will suffice to show

that Ltn−1X is MU-acyclic. In the last lecture, we saw that

MU∗ Ltn−1X ' MU∗ LE(n−1)X,

and the right hand side vanishes since X is assumed to be E(n− 1)-acyclic.

Corollary 8. An object X ∈Mn is compact if and only if it is a retract of LE(n)Y for some finite spectrum
Y of type ≥ n.

Proof. Write X as a filtered colimit of spectra Xα of the form LE(n)Yα. Since X is compact, the identity
map X → lim−→Xα factors through some Xα, so that X is a retract of LE(n)Yα.

Corollary 9. The homotopy theory Mn is compactly generated: that is, every object of Mn can be obtained
as a filtered colimit of compact objects of Mn.

We want to draw attention to a crucial features of the compact objects of Mn. First, we state a slightly
stronger version of the periodicity theorem of Lecture 27:

Theorem 10. Let X be a finite p-local spectrum of type ≥ n. Then there exists a vn-self map f : ΣkX → X

where k = 2(pn − 1)pN for N � 0, which acts by multiplication by vp
N

n on K(n)∗X.

Corollary 11. Let X be a compact object of Mn. Then X is periodic. More precisely, for N � 0, there is
a homotopy equivalence X ' Σ2pN (pn−1)X.

Proof. According to Corollary 8, we can assume that X is a retract of LE(n)Y for some finite p-local spectrum
Y of type ≥ n. Let f : ΣkY → Y be the vn-self map of Theorem 10, where k = 2pN (pn − 1). Then the
action of f on K(n)∗LE(n)Y ' K(n)∗Y is given by vp

N

n . It follows that the composite map

f ′ : ΣkX → ΣkLE(n)Y
f→ LE(n)Y → X

induces multiplication by vp
N

n on K(n)∗X; in particular, it is bijective. Since f ′ is also bijective on K(m)∗X
for m < n (since these groups vanish), we conclude that the homotopy fiber of f ′ is K(m)-acyclic for m ≤ n
and therefore E(n)-acyclic. Since X is E(n)-local, the homotopy fiber of f ′ is also E(n)-local and therefore
trivial; this proves that f ′ is an equivalence ΣkX ' X.

If X is a general monochromatic spectrum of height n, then X is a filtered colimit of compact objects
Xα, each of which is periodic of some period 2(pn−1)pNα . The exponent Nα generally depends on α, so that
X itself is not periodic. Nevertheless, elements of the homotopy of X are organized into “periodic families”:
that is, any class x ∈ πkX is given by an element in some πkXα, which in turn determines elements of
πk+2m(pn−1)pNαX for all m ∈ Z. This is the motivation for the term “chromatic homotopy theory”: the
chromatic tower of a spectrum X is like a prism, which separates X into “monochromatic layers” Mn(X)
each of which exhibit a sort of generalized 2(pn − 1)-fold periodicity.

We conclude with a few remarks relating the monochromatic category Mn with the K(n)-local homotopy
category.
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Proposition 12. The constructions
X 7→ LK(n)X

Y 7→Mn(Y )

determine mutually inverse equivalences between the homotopy category of monochromatic spectra of height
n and the homotopy category of K(n)-local spectra.

We first recall a fact we proved earlier:

Lemma 13. Let X be an E(n− 1)-local spectrum. Then K(n)∗X ' 0.

Proof. Since LE(n−1) is smashing, K(n)⊗X is E(n−1)-local. It will therefore suffice to show that K(n)⊗X
is E(n− 1)-acyclic; that is, that E(n− 1)⊗K(n)⊗X ' 0. This is clear, since E(n− 1)⊗K(n) is a complex
orientable spectrum whose formal group has height < n and exactly n, and therefore E(n−1)⊗K(n) ' 0.

Proof of Proposition 12. We argue that both composite functors are the identity. First, fix a monochromatic
spectrum X of height n. We wish to show that X 'Mn(LK(n)X). Since LK(n)X is K(n)-local, it is E(n)-
local; thus Mn(LK(n)X) can be identified with the homotopy fiber F of the map LK(n)X → LE(n−1)LK(n)X.
Since X is monochromatic, LE(n−1)X ' 0 so there is a canonical map α : X → F . We claim that α is
an equivalence. Since X and F are both E(n)-local, it will suffice to show that α induces an isomorphism
K(m)∗X → K(m)∗F for m ≤ n. If m < n, then both groups vanish. If m = n, we are reduced to proving
that

K(n)⊗X → K(n)⊗ LK(n)X → LE(n−1)LK(n)X

is a fiber sequence. This follows from the observation that the first map is an equivalence and the third term
vanishes (Lemma ??).

Now let Y be a K(n)-local spectrum. Then Y is E(n)-local, so that Mn(Y ) is the homotopy fiber of
the map Y → LE(n−1)Y . We wish to prove that the map Mn(Y ) → Y exhibits Y as a K(n)-localization
of Mn(Y ). Since Y is K(n)-local, it suffices to show that this map is a K(n)-equivalence; that is, that
K(n)∗LE(n−1)Y ' 0; this also follows from Lemma ??.

Corollary 14. The K(n)-local stable homotopy category is compactly generated; its compact objects are
precisely the retracts of spectra of the form LK(n)X, where X is a finite spectrum of type ≥ n.

Warning 15. For a general finite spectrum X, the localization LK(n)X is not a compact object of the
K(n)-local stable homotopy category. For example, if n > 0, then the K(n)-local sphere LK(n)S is not a
compact object of the K(n)-local stable homotopy category.
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The Image of J (Lecture 35)

April 27, 2010

The chromatic convergence theorem implies that the homotopy groups of the p-local sphere spectrum
S(p) can be recovered as the inverse limit of the tower

· · · → π∗LE(2)S → π∗LE(1)S → π∗LE(0)S.

The bottom of this tower is easy to understand: it is the rational sphere SQ, which is homotopy equivalent
to the Eilenberg-MacLane spectrum HQ. Our goal in this lecture is to understand the next step up in the
tower, LE(1)S. For simplicity, we will assume that p > 2.

Our first step is to describe the K(1)-local sphere. Our starting point is the following:

Lemma 1. For each n, the spectrum E(n) is K(n)-local.

Proof. Recall that E(n) is the even periodic Landweber exact spectrum associated to the Lubin-Tate ring
R = W (k)[[u1, . . . , un−1]] associated to a formal group of height n over a perfect field k of characteristic p.

Choose a cofiber sequence
X → S(p) → Ltn−1S(p)

where X is a filtered colimit of p-local finite spectra DFα of type ≥ n. The dual DX is given by the homo-
topy inverse limit of a pro-spectrum {Fα}. Taking MU-homology, we get a pro-system of π∗MU-modules
MU∗{Fα}; the theory of vn-self maps shows that this pro-system can be identified with {π∗MU /(vN0 , v

N
1 , . . . , v

N
n−1}N≥0.

Since E(n) is Landweber exact, we conclude that the pro-system E(n)∗{Fα} is equivalent to {π∗E(n)/(vN0 , . . . , v
N
n−1}.

Since R is complete with respect to its maximal ideal, we conclude that the natural map E(n)→ lim←−E(n)Fα

is a homotopy equivalence. To prove that E(n) is K(n)-local, it therefore suffices to show that each E(n)Fα
is K(n)-local. Let Y be a K(n)-acyclic spectrum; we wish to show that every map Y → E(n)Fα is null-
homotopic. This map is adjoint to a map Y ⊗ Fα → E(n). To show that such a map is nullhomotopic, it
suffices to show that E(n)∗(Y ⊗ Fα) ' 0. This is equivalent to the statement that K(m)∗(Y ⊗ Fα) ' 0 for
m ≤ n. If m < n, this follows from the fact that Fα has type ≥ n; if m = n, it follows from our assumption
that Y is K(n)-acyclic.

Let us now fix our notation a bit more precisely: choose a formal group f of height n over Fpn such that
all endomorphisms of f are defined over Fpn , and let E(n) be the variant of Morava E-theory associated to
this formal group. Then, in the homotopy category of spectra, E(n) is acted on by a group G which fits into
an exact sequence

0→ End(f)× → G→ Gal(Fpn/Fp)→ 0.

In fact, the situation turns out to be even better than this: one can promote the “action of G on E(n)
up to homotopy” to a “homotopy coherent” action of G, which is continuous (with respect to the profinite
topology on G). In this context, one can extract a continuous homotopy fixed point spectrum E(n)G, which
one can prove is equivalent to LK(n)S.

All of this requires technology beyond the scope of this course. However, when n = 1 and p is odd, there
is a lowbrow alternative. In this case, we can identify E(n) with the p-adically completed K-theory spectrum
K̂. The group G can be identified with the group Z×p of p-adic units, which breaks up as a product

µp−1 × (1 + pZp)×

1



where the first factor is the finite group of (p − 1)st roots of unity and the second is a pro-p group. When
p > 2, the second group is actually the cyclic pro-p group: it is generated, for example, by the element
1 + p ∈ 1 + pZp.

Remark 2. It is easy to describe the induced action on π∗K̂. For any complex orientable cohomology
theory E, we can identify π2E with the dual of the Lie algebra of the associated formal group. Note that
the action of Z×p on K̂ is induced by its action on the multiplicative formal group f(x, y) = x+ y+ xy. The
action of Z×p on π2K̂ is therefore given by differentiating the action of Z×p on the formal group itself: that
is, it is given by the identity character of Z×p . Since π∗K̂ ' Zp[β±1] and Z×p acts by ring homomorphisms,
we conclude that Z×p acts by the nth power of the identity character on π2nZp.

If n ∈ Z×p , we will denote the corresponding map K̂ → K̂ by ψn. One can show that these operations
agree with the classical Adams operations in complex K-theory (which provides another proof of Remark 2).

If p is odd, then the group Z×p is topologically cyclic: it has a generator given by g = (ζ, p + 1), where
ζ is any primitive (p− 1)st root of unity. Consequently, we should expect taking continuous Z×p homotopy
fixed points to be easy: they should be given by the homotopy fiber of the map

K̂
1−ψg→ K̂.

Let us denote this homotopy fiber by F .

Proposition 3. The map α : S → F induces an isomorphism on K(1)-homology.

Proof. Recall that K(1) can be realized as a summand of K̂/p. It will therefore suffice to show that α
induces an equivalence in K̂/p-homology. Since K̂ is Landweber exact, we have

K̂0(K̂/p) ' π0K̂ ⊗L (MP0 MP)⊗L π0K̂/p

(moreover, the homologies in all even degrees are the same by periodicity, and the homologies in odd
degrees vanish). This is the Fp-algebra which classifies isomorphisms of the multiplicative formal group with
itself: that is, the algebra A of continuous Fp-valued functions on the profinite group Z×p . In terms of this
identification, the operation ψg is given by translation by g. We observe that 1 − ψg is a surjective map
from A to itself, and its kernel is the one-dimensional Fp-vector space of constant functions on Z×p . Using
the long exact sequence

(K̂/p)∗F → (K̂/p)∗K̂
1−ψg→ (K̂/p)∗K̂,

we conclude that (K̂/p)∗F ' Fp[β±1] ' (K̂/p)∗S.

Since K̂ is K(1)-local, the spectrum F is also K(1)-local. It follows that:

Corollary 4. The map S → F exhibits F as the K(1)-localization of S. In other words, the K(1)-local
sphere LK(1)S is given by the homotopy fiber of the map 1− ψg : K̂ → K̂

It follows that we have a long exact sequence

πnK̂
1−ψg→ πnK̂ → πn−1LK(1)S → πn−1K̂

which we can use to compute the homotopy groups of LK(1)S. We note that ψg is the identity on π0K̂ ' Zp,
so that 1− ψg vanishes on π0 and we get isomorphisms

π0LK(1)S ' π−1LK(1)S ' Zp.

The groups πnK̂ vanish if n is odd. On π2mK̂, the map 1 − ψg is given by 1 − gm (Remark 2), and is
therefore always injective for m 6= 0. Using the long exact sequence, we see that the even homotopy groups
of LK(1)S vanish (except in degree zero), and we have an isomorphism π2m−1LK(1)S ' Zp/(1− gm).
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The cardinality of this group depends on m. If m is not divisible by p− 1, then gm − 1 is a unit modulo
p so that π2m−1LK(1)S vanishes. If m = (p − 1)m′, then gm = (gp−1)m

′
where gp−1 is a generator for

the topologically cyclic pro-p-group (1 + pZp)×. If we write m′ = pkm′′, where m′′ is prime to p, then gm

generates the cyclic subgroup (1 + pk+1Zp)×, so that 1− gm is a generator for pk+1Zp ⊆ Zp. We conclude:

Theorem 5. The homotopy groups of LK(1)S are given as follows:

πnLK(1)S '


Zp if n = 0,−1
Z/pk+1Z if n+ 1 = (p− 1)pkm,m 6≡ 0 mod p

0 otherwise.

From Theorem 5 it is easy to describe the E(1)-local sphere. Recall that we have a homotopy pullback
square

LE(1)S //

��

LK(1)S

��
LE(0)S // LE(0)LK(1)S.

The localization LE(0)S is just the Eilenberg-MacLane spectrumHQ. Theorem 5 implies that πnLE(0)LK(1)S '
Qp for n = 0, 1 and vanishes otherwise. Using the long exact sequence

· · · → πn+1LE(0)LK(1)S → πnLE(1)S → πnLK(1)S ⊕ πnLE(0)S →→ πnLE(0)LK(1)S → · · · ,

we conclude that πnLE(1)S ' πnLK(1)S unless n ∈ {0,−1,−2}. In these degrees, we have an exact sequence

0→ π0LE(1)S → Zp ⊕Q→ Qp → π−1LE(1)S → Zp → Qp → π−2LE(1)S → 0.

Collecting these facts together, we obtain:

Theorem 6. The homotopy groups of LE(1)S are given as follows:

πnLK(1)S '


Z if n = 0
Qp /Zp if n = −2
Z/pk+1Z if n+ 1 = (p− 1)pkm,m 6≡ 0 mod p

0 otherwise.

There is an evident map π∗S(p) → π∗LE(1)S, whose kernel is the second step in the chromatic filtration of
π∗S(p). This map is obviously not surjective, since π∗S(p) is concentrated in positive degrees, while π∗LE(1)S
is not. However, this turns out to be the only obstruction: the map πnS(p) → πnLE(1)S is surjective for
n ≥ 0. In other words, if n > 0, then every class in πnLE(1)S ' πnMn(S) survives the chromatic spectral
sequence. This is a result of Adams; let us briefly describe (without proof) the ideas involved.

Let O(k) denote the orthogonal group of a k-dimensional vector space. Then O(k) acts on the 1-point
compactification of Rk, fixing the point at infinity; this compactification can be identified with Sk. In
particular, given a pointed map X → O(k) for any space X, we get a map X ∧ Sk → Sk. Taking X to
be a sphere, we get a map πnO(k) → [Sn+k, Sk]. Taking the limit as k 7→ ∞, we get a homomorphism
πnO → πnS, where O denotes the infinite orthogonal group and S the sphere spectrum. This map is called
the J-homomorphism.

The relationship between the J-homomorphism and the first chromatic layer can be stated as follows:

Theorem 7. Let =(J)n denote the image of the J-homomorphism πnO → πnS → πnS(p). For n > 0,
the map S(p) → LE(1)S induces an isomorphism θ : =(J)n → πnLE(1)S. In particular, the map πnS(p) →
πnLE(1)S is surjective.
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The proof consists of two parts: proving that θ is injective and proving that θ is surjective. The surjectivity
is not far from what we have done in class: we already know that each πnLE(1)S is a cyclic group, so it
suffices to show that θ hits a generator of the group; this can be proven by an explicit calculation.

Remark 8. The description of the image of the J-homomorphism was an important precursor to the
development of the chromatic picture of homotopy theory: many of the ideas we have discussed had their
origins in attempting to explain (and generalize) the “periodic behavior” exhibited by the image of the J
homomorphism.
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