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This seminar will focus on computaional results. This talk will be a little differ-
ent. In the first part we will give a brief overview of chromatic homotopy, from a
fairly abstract point, to understand the role of the various objects in the theory.
Then, we will state the Nilpotence theorem, one of the major (and hardest)
results in chromatic homotopy. Lastly, we will deduce the thick subcategory
theorem from it.

1 A Brief Overview of Chromatic Homotopy

One of the classical ideas in algebraic topology is to approximate spaces or
spectra by some more accessible algebraic object. There is a trade-off between
having good approximation, and accessible or conceptual approximation. For
example given a spectrum E (“homology theory”) we can construct a functor
E.(—):Sp — GrAb. If F =S we get the homotopy groups which are a great
approximation but very hard to compute, while if £ = HQ we get very little
information but it is very easy to compute. In fact, we note that F, X is an F,-
module, i.e. E,(—):Sp — Modg, which might give a better approximation to
Sp. Moreover, if E is a ring spectrum (good, E. F is flat etc.). Then, E, X has
some extra structure, namely the structure of an 7, (F ® FE) = E, E-comodule
(over E), so the functor is E, (—) : Sp — Comodg, g, g), which be an even
better approximation.

As we said, there is a tradeoff between how good the approximation is, and how
accessible or conceptual it is. There is case (and variants of it), which are the
topic of chromatic homotopy theory, which turn out to give both a very good
approximation, and a very conceptual one.

Recall that a complex orientation on a ring F (i.e. MU — E) gives rise to a for-
mal group law on E, (i.e. L — E,). Moreover, if F' is another complex oriented



ring, then E,F = 7. (E ® F) carries formal group laws (coming from the two
maps MU - E = E®S - EQF and MU — F = S®F — E®F) and an iso-
morphism between them (since this comes from the induced map on cohomology
from BU (1) x BU (1) — BU (1)). Quillen’s theorem says that the formal group
law on MU, is the universal formal group law (i.e. L = MU,), and furthermore
that MU, MU is the universal ring with two formal group laws and an isomor-
phism between them. This allows us to interpret (MU,, MU, MU) as represent-
ing the stack of formal groups Mg, that is Comod (v, mu, muy = QCoh (Mgg).
Thus we can interpert our situation as MU, (=) : Sp — QCoh (Mj,).

This is an approxmation of spectra by quasi-coherent sheaves on a well un-
derstood object (which is interesting for other reasons in number theory and
algebraic geometry). This approximation turns out to be very good, and is able
to give a lot of information about spectra (although not perfect, for example
there are some non-zero spectra mapped to 0 under this approximation).

To simplify the situation, one can work p-locally, to obtain a functor MU, (—) :
Sp(, — QCoh (Mfg,(p)). One could also work globally, and the results later
would work globally as well.

Now, recall that formal group laws have a notion of height, which is a number
in 0,1,...,00. One can look at the open sub-stack Mfgg" C Mg, (), for some
height n, so by restriction we get Sp(,y — QCoh (Mé") This filtration on Mg,
gives a filtration on Sp called the height filtration, and allows us to study spectra
height-by-height, in an inductive manner, a concept we will see soon in the talk
on the chromatic convergence theorem. The functor above (well, not exactly
it, but something very close) can be implemented in spectra, namely, there is a
ring spectrum called Morava E-Theory, or the Lubin-Tate spectrum, at height
n (for 0 < n < o0), denoted E,, which sees information of height < n. This
spectrum has coefficients (E,), = W (k) [[u1, . .., up—1]] [u!] where degu = 2.
Specifically, F,, is constructed using LEFT, i.e. (E,), (X) = MU, (X) ®uu,
W (k) [[u1, - tn—1]] [uil].

*

Furthermore, we can try an understand height n exactly, i.e. the restriction to
the sub-stack M, = Mng" \Mf—<g”_1. It is known that M, has a unique point,
i.e. over Fp there is a unique formal group law of height n, but it has a lot
of automorphisms. The group of automorphisms, called the Morava Stabilizer
Group, is denoted by G,. Thus Mf, = Spec F,//G,. The height n information
can also be seen in spectra. There is a spectrum called Morava K-Theory at
height n, denote by K (n), which sees information at height n. It has coefficients
K (n), = F, [vif'] where degv, = 2(p™ — 1). By convention K (0) = HQ and
K (00) = HF,. These spectra are in some senses the fields/atoms of spectra,
we will see an instance of this idea in the thick subcategory theorem.

To conclude, we have spectra MU, E, and K (n), which correspond to all
heights, height < n and height n. It should be noted that the first two are
E-rings, while K (n) is known to not admit the structure of an F.-ring.



These spectra have lots of relationships between them, for example, for a spec-
trum X, (E,), (X) =0if and only if K (7), (X) = 0 for 0 < i < n (that is, their
Bousfield classes are the same, and are the height n information). (Warning, it
is NOT true that MU and @®5°,K (i) are Bousfield equivalent).

2 The Nilpotence Theorem

One can ask how good is the chromatic approximation. For example, one may
wonder if ¢z € m, X (i.e. :S™ — X) can be detected using it, i.e. is it true
that z is zero if and only if its image under Hurewicz in MU,,, X is zero. This
is not true, but still a very strong result is true. To state it we first make a
definition.

Definition 1. Let {E*} be a collection of ring spectra. We say that they detect
nilpotents if one of the following conditions holds:

1. Let F &5 X bea map from a finite spectrum (the main example is F' = S)
to a p-local spectrum. If the induced map FF — X — X ® E® is zero for
all o, then f&m: F®" — X®" ig zero for n large enough.

2. Let R be a p-local ring spectrum and = € 7, R. If the image of x in
E2 (R) is zero for all «, then z is nilpotent in 7, R.

m

Remark 2. We multiply € mnR and y € mxR by S™+F = §m @ sk 224,

multiplication .. .
R®R R living in w4 R.

Devinatz, Hopkins and Smith proved the following theorem (hard!):

Theorem 3 (Nilpotence). The spectrum MU detects nilpotents. Similarly,
{K (n)}gcn<o detect nilpotents.

This theorem shows one way in which chromatic homotopy gives control over
spectra. The rest of the lecture will draw conclusions from this theorem.

Corollary 4 (Nishida). All x € 7,,,S for m > 1 are nilpotent.

Proof. By Serre’s theorem, z is torsion (note that torsion means additively, and
nilpotent means multiplicatively). Therefore the image of = in MU,, (S) =
MU, is torsion. But by Quillen’s theorem MU, = L, and by Lazard’s theorem
L = Z[x1,x2,...], which has no torsion. Therefore the image of x is 0, so by
the Nilpotence theorem x itself is nilpotent. O

Corollary 5. Let R be a (non-zero) p-local ring spctrum. Then R® K (n) # 0
for some n.

Proof. Assume by negation that R ® K (n) = 0 for all n. Then 1 € moR is
mapped to 0 in K (n), R = 0. Therefore by the Nilpotence theorem 1 € moR is
nilpotent, which means that 1 = 0, which means that R is the zero ring. O



3 The Thick Subcategory Theorem

I want to start with a definition. Fix some symmetric monoidal stable co-
category C.

Definition 6. A full subcategory T C C is called thick if:

1. 0e€7,
2. T is closed under cofibers,

3. T is closed under retracts.

There are various motivations for studying thick subcategories.

One motivation is as follows. Many properties in mathematics are closed under
the above operations. Therefore, if we can show that some X € C satisfies the
property, then we know that the whole thick subcategory generated from X
satisfies the property. If we know all subcategories C, this can be a good way
to prove theorems about them.

Another motivation is the Balmer spectrum. I don’t have time for it, but if R is
a (usual) ring, take G = ChP™ (R) the category of chain complex of projective
finitely generated modules. It turns out that if look at the collection of thick
subcategories satisfying some extra conditions (called being prime ideal), then
this recovers Spec R. Thus, one can apply this for other interesting co-categories.

In our case we wish to study thick subcategories of € = Sp?;;) i.e. p-local finite
spectra. For every 0 < n < oo we define C>,, = {X € Sp?;) |Ym<n:K(m),(X)= O}.
For example, C>o = Sp{(i;), C>1 ={X|HQ,(X)=0} = Spin  Also, clearly

tor-
C>n 2 C>pt1, and in fact this is always a proper subcategory (we will see this

later in the seminar, as a corollary of the periodicity theorem).

Remark 7. The Atiyah-Hirzebruch spectral sequence says that for a spectrum X
and a spectrum A, we have a spectral sequence E | = Hy, (X; Aq) = Apyq (X).
That is we can compute the A-homology of X, from its ordinary homology with
various coefficients (and a lot of differentials, in general).

Proposition 8. Cx. =0, that is if K (n), (X) for alln < oo, then X = 0.

Proof. Assume that X is not zero. Then by universal coefficient theorem (since
X is plocal) H, (X,F,) # 0. But, since X is finite, H,, (X,F,) = 0 for m >
mo. We now use the Atiyah-Hirzebruch spectral sequence for K (n). We have
E2, = H, (X;K(n)q) = K (n),,, (X). Recall that K (n), = F, [v] where
degv, = 2(p" —1). Thus, for ¢ multiple of degv,, the E? -page is the row
H, (X,F,), and otherwise 0. This line is bounded between 0 and m, so if
we take n large enough, that is 2 (p™ — 1) > mg + O (1), then all differentials

either start or end at 0. Therefore the spectral sequence collapses, and we get
K (n), (X)=H.(X,F),) [vfl} #£0. O



Furthermore, one can prove that for a finite spectrum X, if K (n), (X) = 0 then
K (n—1), (X) =0 as well. Therefore, in fact C>,, = {X | K (n — 1), (X) = 0}.
A spectrum in €, is called of type > n, and if K (n), (X) # 0 it is of type n.

The main theorem is then:

Theorem 9 (Thick Subcategory). The thick subcategories of Sp?;) are the C>p,
for 0 <n < oco.

Proof. Let T be some thick subcategory. First of all we note that if X € T, then
for any Y € Sp?;), X ®Y €7. This is because X ® S= X € T, and every Y is
built by extensions from S, so because T is thick, X ® Y € T.

If T =0 then T = C>, and we are done, so from now on assume that T # 0.
Take X € T of minimal type, say n, i.e. X € C>p, \ C>pq1. We have T C €5,
for otherwise there is Z € T\ C>jp, ie. of type < n, which contradicts the
minimality of X. To finish, we show that C>, C 7.

Let DX = hom (X, S) be the Spanier-Whitehead dual, and define S - X @ DX
be the mate of the identity under the adjunction. Define the fiber to form
F % S - X®DX. Since X is of type n, we have K (m), (X) # 0 for
m > n, thus K (m), — K (m), (X) ®k@m). K (m), (X)" is an injection (they
are graded finite dimensional vector spaces over Fj). Therefore, the kernel
K (m), (F) 2 K (m), is zero.

Now let Y € Cs,, and we show that ¥ € T. Similarly to before, look at

sy ® DY. Pre-compose this with /% S, to get f = fa (note that F was
formed from X). For m > n, we had «, = 0, thus f, = B.a, = 0. For m < n,
we have K (m), (Y') = 0, thus the target of 5, is 0, so fi = S = 0.

*

We have shown that f, for every m, so from the Nilpotence theorem we get

that f : F — Y @ DY is nilpotent. That is, there is k such that f®* = 0,
W@k ®k
je. FOF 2, gek P, (Y @ DY)®* is zero. The spectrum Y @ DY also

has an evaluation map ¥ ® DY — S. Compose with it k£ — 1 times, we get
that F®F — (Y ® DY)®" - Y @ DY is zero, and taking the mate we get that

a®k@i . . .
Fo @y 2% S0V — Y is zero. Therefore, the cofiber of this map is
C(a® ®id) =Y @ X (F®* ®Y). Recall that we wanted to show that Y € T,
but 7 is closed under retracts, so it is enough to show that C' (a®k ® id) e7J.

®k . e s ®k- 06®1d ®k_1 a®id Oé®id
The map a®” ®id is the composition FO*RY —— F RY — .. ——
Y, so to show that C (oz®’C ® id) € 7, it is enough to show that

I>C <F®l pY 2849, pel-1g Y) =C(F - S)®@F® 1oy = X DXoF® 'Yy

We know that X € T, thus the tensor with it is in T, so we are done. O



