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A great source for all things in chromatic homotopy, especially for getting ref-
erences, is [BB19]. The following thesis is very useful for this talk [Hea14].

1 Galois Descent

Let A → B be a Galois field extension, with Galois group G = Gal (B/A). By
definition we know that BG = A.

Given a module M ∈ ModA, we can extend scalars and form N = B ⊗A M ∈
ModB , by considering B as a (B,A)-bi-module. Moreover, we can define an
action of G on B ⊗AM by its action on B, i.e. g (b⊗m) = gb ⊗m. However,
this action is not B-linear, for b′ ∈ B we have g (b′ (b⊗m)) = g (b′b⊗m) =
g (b′b)⊗m = g (b′) g (b)⊗m = g (b′) (g (b)⊗m), i.e. g (b′n) = g (b′) g (n), namely,
it is semilinear. So B⊗AM is a B-module with a semilinear G-action, we denote
this category by ModGB . Thus we got a functor B ⊗A − : ModA → ModGB .

Given N ∈ ModGB , we can take the fixed pointsM = NG. This has the structure
of an A-module, since for m ∈M and a ∈ A, and any g ∈ G, we have g (am) =
g (a) g (m) = am, i.e. am is a fixed points as well. This gives a functor (−)G :
ModGB → ModA.

Theorem 1 (Hilbert 90). The two functors form an equivalence of categories
B ⊗A − : ModA � ModGB : (−)G.

Before saying anything about the proof, I would like to generalize a little bit,
which will both be useful later and put it in a more suitable context.
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2 Galois Extensions of Commutative Rings

We would like to generalize the notion of a Galois extension of fields to commu-
tative rings (and later E∞-rings in arbitrary categories), so we first make some
remarks on the situation of Galois extensions of fields. We started with a map
A → B, making B into an A-algebra, and G = Gal (B/A) acts via A-algebra
maps. Then, we get a morphism to the fixed points, which is an isomorphism
A
∼−→ BG.

Consider the morphism B ⊗A B →
∏
GB given by x⊗ y 7→ (xg (y))g.

Proposition 2. Under the hypothesis above, A → B Galois is equivalent to
B ⊗A B

∼−→
∏
GB.

Proof. Assume that A→ B is Galois. Then by the primitive element theorem,
B = A (α). Consider its minimal polynomial f , whose roots are g (α), i.e. in B
we have f (x) =

∏
G (x− g (α)). We get:

B ⊗A B = B ⊗A A [x] /f
= B [x] /f

= B [x] /
(∏

G

(x− g (α))
)

=
∏
G

B [x] / (x− g (α))

=
∏
G

B

For the other direction take dimA to both sides to get (dimAB)2 = |G|dimAB,
so |G| = dimAB, which implies that the extension is Galois.

This is very generalizable, as follows:

Definition 3 ([Rog05]). Let A→ B be a map of commutative rings. Let G act
on B via A-algebra morphisms. We say that A→ B is a G-Galois extension if:

1. A ∼−→ BG,

2. B ⊗A B
∼−→
∏
GB.

2.1 Galois Descent, Again

In this situation we can repeat the constructions from before and to get

Theorem 4 (Hilbert 90). B ⊗A − : ModA � ModGB : (−)G is an equivalence.
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A way to prove this is as follows. Generally, given a morphism of rings f : A→ B
one can form a category of modules over B together with descent data Descf ,
and a functor ModA → Descf . In many situations this is an equivalence, for
example when f is faithfully flat, as it is in field extensions. Furthermore, if
A→ B is a G-Galois extension, then Descf is equivalent to ModGB .

There are various reasons for this being useful. For example, it might turn
out that modules over B are easier to handle. Furthermore, we can also forget
the G-action, and obtain information on ModA ∼= ModGB from ModB via the
forgetful functor or its adjoint.

3 Galois Extensions of E∞-Rings

In fact, we can mimic this whole story in the homotopical world. Let C be some
symmetric monoidal ∞-category (e.g. Sp or SpE).

Definition 5. Let A → B be a map of E∞-rings in C. Let G act on B via
A-algebra morphisms. We say that A→ B is a G-Galois extension if:

1. A ∼−→ BhG,

2. B ⊗A B
∼−→
∏
GB.

3.1 Galois Descent, Once More

To define the corresponding ∞-category ModGB (C), we reinterpret ModGB from
before. First, we note that we have a G action on the category ModB : given
N ∈ ModB and g ∈ G we define Ng ∈ ModB to have the same elements
and action by B ⊗ N

g⊗id→ B ⊗ N → N i.e. b.gn = g (b)n. Consider the
fixed-point category (in the 2-category of categories) ModGB , an object here is
N ∈ ModB together with for every g ∈ G an isomorphism φg : N → Ng.
Being B-linear means φg (bn) = b.gφg (n) = g (b)φg (n), which is precisely a
semilinear action. Thus ModGB is the fixed-point category of the action of G on
ModB . In much the same way, we have a G-action on ModB (C), and we define
ModGB (C) = (ModB (C))hG, the ∞-category of modules over B in C together
with a semilinear action of G.

Then, assuming A → B is a faithful (which is true for ordinary rings, but not
known for general E∞-rings), we have:

Theorem 6 (Hilbert 90 [Ban17, Theorem 2.8]). B⊗A− : ModA (C) � ModGB (C) :
(−)G is an equivalence.
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4 Galois Extensions in Chromatic Homotopy

We first recall the construction of En, Morava E-theory at height n. Let k be
a perfect field of characteristic p, and Γ a formal group law over k of height
n. Then, Lubin-Tate developed a deformation theory for Γ/k, and proved that
there is a universal deformation, i.e. a ring LTk,Γ and ΓU over it. Moreover, non-
canonically LTk,Γ = Wk [[u1, . . . , un−1]]. We then add a variable u at degree
2 LTk,Γ

[
u±1], and twist by it to get a formal group law of the correct degree

uΓU . One can then easily finds that this is Landweber exact, so using LEFT
we define E (k,Γ)∗ (X) = BP∗ (X) ⊗BP∗ LTk,Γ

[
u±1]. This defines a spectrum

E (k,Γ) which we call Morava E-theory at height n.

This depends on k,Γ, and there are many possible choices for them. Concep-
tually, it is nicest to choose k = Fp (as then En is the maximal unramified
extension), but for computations it is easier to choose k = Fpn , over which
all automorphisms are define, so we work with it. We write En or even E for
E (Fpn ,Γ).

By Goerss-Hopkins-Miller ([GH04; GH05]), the spectrum E (k,Γ) can be up-
graded to an E∞-ring, functorially in k,Γ. The functoriality means that Gn =
Aut (Fpn ,Γ) (i.e. an isomorphism ϕ : Fpn → Fpn , and a strict isomorphism
Γ → ϕ∗Γ) acts on En through E∞-ring maps, and in fact they show that
Gn

∼−→ AutE∞ (En) (it should be noted that this group is infinite and acts
continuously in some sense, but we will ignore this point completely). This au-
tomorphism group is called the Morava Stabilizer Group. We note that we have
the homomorphisms that fix the field, that is Sn = Aut (Γ), and that we have
Galois part, in fact Gn = Sn o Gal (Fpn/Fp).

By a standard argument, En is K (n)-local (this shouldn’t be too surprising, as
on the side of the algebra, LTk,Γ (roughly En) is the deformation of the point
Fpn ,Γ (roughly K (n)) in Mfg). By adjunction, this means that we have a map
SK(n) → En (where SK(n) = LK(n)S is theK (n)-local sphere) and theGn action
is over SK(n), and it makes sense to work in the category C = SpK(n) of K (n)-
local spectra from now on. Another big theorem by Devinatz-Hopkins ([DH04],
see also [Rog05, section 5.4]), is that indeed this is an Gn-Galois extension, i.e.
SK(n) = EhGn

n .

Before moving on, let’s recap and write a table of analogies:

Algebra Homotopy
Unit Z S
Point in Spec of the unit Fp K (n)
Localized unit Zp = WFp SK(n)
Extension Zp (ζpn−1) = WFpn En
Galois group G = Gal (Fpn/Fp) Gn

(WFpn)G = WFp EGn
n = SK(n)
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4.1 Galois Descent, Last Time - Ninja Turtles, Morava
Modules etc.

We now wish to describe the situation of the relevant module categories. Recall
that we work with C = SpK(n), A = SK(n) (thus ModA (C) = SpK(n)), B = En
and G = Gn. By [Rog05, Prop. 5.4.9] the extension En/SK(n) is faithful, thus
we are under the conditions of Hilbert 90 so we get

Theorem 7 (For another approach see [Mat16, Proposition 10.10]). There is
an equivalence En ⊗K(n) − : SpK(n) � ModGn

En

(
SpK(n)

)
: (−)Gn between the

K (n)-local category to the category of spectral Morava modules (i.e. K (n)-local
En-modules with a Gn-semilinear action).

Definition 8. We also take the homotopy groups, to the category of Morava
modules ModGn

E∗
(complete (En)∗-modules with a Gn-semilinear action.) In an-

other direction, we can forget the Gn action to the category of Ninja turtles
ModEn

(
SpK(n)

)
(K (n)-local En-modules).

ModGn

E∗

SpK(n) ModGn

En

(
SpK(n)

) π∗

66

(−)

((

ModEn

(
SpK(n)

)
These constructions have many uses, we will demonstrate one of them via Picard
groups.

Remark 9. Note that our tensor product is in the K (n)-local category, i.e.
LK(n) (En ⊗X). For example, the map to Morava modules gives E∨∗ (X) =
π∗
(
LK(n) (En ⊗X)

)
, this is not a homology theory, but as we can see it plays

very nicely in this framework.

5 Picard Groups

Definition 10. Let C be a symmetric monoidal (∞-)category. An object M ∈
C is called invertible if there exists an object M−1 and an equivalence M ⊗
M−1 ∼= 1C. The Picard group Pic (C) is the collection of invertible objects up
to isomorphism, with tensor product as the group structure (abelian, since we
assumed symmetric monoidal).
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We will not need this in the rest of the talk, but instead of taking the quotient
by isomorphisms, we can look at the space (i.e. (∞-)groupoid) of invertible
objects Pic (C). This has an E∞ structure of by the (symmetric) tensor product,
which is group-like by assumption. A group-like E∞-space is also known as a
(connective) spectrum, so we can consider Pic (C) as a spectrum. By definition,
π0 Pic (C) = Pic (C).

Remark 11. If M is invertible, then it is in particular dualizable, and if the
category is also closed, then we get that M−1 = DM = hom (M, 1C).

Classically this was considered in the context of algebraic geometry, where for
a scheme X we look at the category of quasi-coherent sheaves over X, i.e.
Pic (X) = Pic (QCoh (X)). In the affine case we get Pic (R) = Pic (ModR).
This captures interesting information known in many names (e.g. the first
cohomology, ideal class group...)

These constructions are interesting for various reasons. For example, this is a
way to construct (possibly interesting) groups and spectra, which are invariants
of C. Furthermore, clearly Sn ∈ Pic (S) = Pic (Sp), and we are used to the fact
that Sn⊗− (i.e. de/suspension) is an important operation on spectra. Similarly,
for any M ∈ Pic (C) we get an invertible operation on C, namely M ⊗−.

Example 12. For a usual ring R, a module M is invertible if and only if it
is finite locally free module of rank 1. For example, for R = Z there is only Z
itself, thus Pic (Z) = {Z}.

Example 13. In any stable ∞-category C we have Σn1C ∈ Pic (C), so we have
a map Z→ Pic (C). We claim that in Pic (Sp) this is an isomorphism.

Proof. Assume that M ∈ Pic (S). Since M ⊗M−1 = S, for k = Fp or k =
Q we get by Kunneth that H∗ (M ; k) ⊗k H∗

(
M−1; k

)
= H∗ (S; k) = k, thus

H∗ (M ; k) is in a single degree. Using the universal coefficient theorem we
deduce that H∗ (M ;Z) is in a single degree, say m. By (stable) Hurewicz we get
πm (M) = Z, so have a map Sm → M inducing an isomorphism on homology.
Since the spheres are HZ-local, it will suffice to show that M is HZ-local. Let
X be HZ-acyclic, then X ⊗M−1 is also HZ-acyclic, and we get hom (X,M) =
hom

(
X ⊗M−1,S

)
= 0 (as S is HZ-local).

6 K (n)-local Picard Group

As we have seen, Pic (S) = Z, but one may wonder about Picn = Pic
(

SpK(n)

)
.

It turns out that this group contains many interesting elements.

Using the maps SpK(n)
∼−→ ModGn

En

(
SpK(n)

)
→ ModGn

E∗
we get a map on Picard

groups, εn : Picn → Picalg
n = Pic

(
ModGn

E∗

)
(which is many times not injective,
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and it is still open if it is always surjective). We also denote the kernel by
κn = ker εn. Before moving on, we table some known cases of these, to see some
of the phenomena going on:

n p Picn Picalg
n κn

1 ≥ 3 Zp × Z/2 (p− 1) Zp × Z/2 (p− 1) 0
1 2 Z2 × Z/2× Z/4 Z2 × (Z/2)2 Z/2
2 ≥ 5 Z2

p × Z/2
(
p2 − 1

)
Z2
p × Z/2

(
p2 − 1

)
0

2 3 Z2
3 × Z/2

(
32 − 1

)
× (Z/3)2 Z2

3 × Z/2
(
32 − 1

)
(Z/3)2

2 2 ? ? ? (in progress)

As we can see, there are many interesting phenomena here. We shall state some
of the main known results, and then move on to explicitly computing the case
n = 1 and p ≥ n.

Theorem 14 ([HMS92, section 9]). The map Z → Picn given by m 7→ SmK(n)
can be extended to an injective map Zp → Picn.

Theorem 15 (“Large primes” [HMS92, Proposition 7.5]). If 2 (p− 1) ≥ n2 and
p− 1 - n (i.e. p > 2), then εn : Picn → Picalg

n is injective.

Proof sketch. In this range the K (n)-local En-Adams spectral sequence col-
lapses for degree reasons at the E2-page for any X ∈ Picn. The isomorphism
E∨∗X

∼= E∨∗ SK(n) induces an isomorphism on the E2-page, which gives us a
map SK(n) → X that induces the isomorphism on the E2-page, i.e. gives an
equivalence of spectra.

Theorem 16 (“Larger primes” [Pst18, Theorem 1.1]). If 2 (p− 1) ≥ n2 + n
then εn : Picn → Picalg

n is an isomorphism.

Since E∗ is 2-periodic, and Gn acts level-wise, we can look at subgroup of index
2, of modules which are concentrated in even degrees. This gives a short exact
sequence 0 → Pic0

n → Picn → Z/2 → 0, and similarly for the algebraic Picard.
The map restricts to εn : Pic0

n → Picalg,0
n .

Very generally, let G be a group acting on a ring R. There is a forgetful functor
ModGR → ModR, giving Pic

(
ModGR

)
→ Pic (ModR), we denote its kernel by

KG
R . Then, we have a map KG

R → H1 (G;R×): given M ∈ KG
R , because it is

in the kernel it has a generator e, and for any g ∈ G, ge is another generator,
so they differ by ug ∈ R×, which defines a cohomology class u : G → R×. In
fact, this map is an isomorphism (this is classical, but can be found in [HMS92,
Proposition 8.4], this also connects what we call Hilbert 90 with usual cohomo-
logical statement). See Tomer’s remarks below for a more general perspective.
In our case, we deduce that:

Theorem 17. Picalg,0
n
∼= H1

(
Gn;WFpn [[u1, . . . , un−1]]×

)
.
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6.1 Picard at Height 1 and Primes ≥ 3

We don’t really have time to do this, but let’s sketch the argument without
using the theorems above (details are in [HMS92, Section 2].)

Let’s recall some facts about height 1. This is one of the places where it is
easier to use k = Fpn = Fp rather than Fp. In this case E = E1 = KUp is
p-complete complex K-theory, whose homotopy groups are Zp

[
u±1]. Further

G1 = S1 = Z×p are the Adams operations ψk. Since Z×p is also topologically
cyclic it has a generator g, corresponding to ψg. Then we get SK(1) = EhZ

×
p =

Fib
(
E

ψg−1−−−→ E
)
.

Recall that we have a short exact sequence 0 → Pic0
n → Picn → Z/2 → 0.

Modifying the construction above, for every invertible λ ∈ Zp we can define
Xλ = Fib

(
E

ψg−λ−−−−→ E
)
, and for λ = gn one gets Xgn = S2n

K(1). We don’t have
the time to prove the following result, but it isn’t too hard.

Proposition 18. The map Z×p → Pic0
n given by λ 7→ Xλ is an isomorphism.

Proposition 19. The sequence 0→ Pic0
n → Picn → Z/2→ 0 doesn’t split.

Proof. Assume by negation that that it does split. S−1
K(1) represents 1 ∈ Z/2, so

Xµ⊗S−1
K(1) is of order 2 for some µ. Then we get that SK(1) =

(
Xµ ⊗ S−1

K(1)

)⊗2
=

Xµ2 ⊗ S−2
K(1), i.e. Xµ2 = S2

K(1) = Xg. Thus, by the isomorphism from before
g = µ2, which contradicts the fact that g is a generator.

Corollary 20. Picn ∼= Zp × Z/2 (p− 1).

Proof. Since Pic0
n
∼= Zp×Z/ (p− 1), and the sequence doesn’t split, we get that

the only extension is the desired extension.

6.2 Determinant Sphere

There are some special elements in the Picard, and we give an example of one
of them. Recall that Gn = Sn o Gal (Fpn/Fp) where Sn = Aut (Γ). Consider
O = End (Γ), then Sn = O× acts on O by composition. These things can be
described very concretely, and then one sees that O is a (free) WFpn-module of
rank n. This means that we get a map Sn

action−−−−→ GLn (WFpn) det−−→ (WFpn)×
(in fact it is Galois invariant and thus lands in Z×p ). We define the composition
det : Gn → Sn → (WFpn)× ⊆ (En)×0 . This map is a cohomology class in
H1
(
Gn;WFpn [[u1, . . . , un−1]]×

)
. As the latter is isomorphic to Picalg,0

n , the
map det corresponds to a Morava module E∗ 〈det〉 ∈ Picalg

n . In [BBGS18] they
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show that it can be lifted to an element S 〈det〉 ∈ Picn itself (for all n and p),
i.e. E∨∗ S 〈det〉 = E∗ 〈det〉.

This element S 〈det〉 is also very related to In of Gross-Hopkins duality (namely,
for p large enough In = Σn2−nS 〈det〉, and for smaller primes you need to tensor
with another spectrum), but as we haven’t discussed this duality and don’t have
more time, we will not pursue this train of thought.

7 Tomer’s Remarks

Tomer made a few remarks. I don’t remember all of them, but here are some.

Here is the way Picard groups are really computed. Recall that in fact we
have a Picard spectrum Pic (C), and Pic (C) = π0 Pic (C). Assume that C has
a G-action (i.e. we have a BG diagram of ∞-categories), then Pic (C)hG =
Pic

(
ChG

)
(in fact, Pic is the right adjoint to the inclusion of ∞-groups in

monoidal categories, thus it commutes with limits). This gives a fixed-point
spectral sequence En,s2 = Hs (G;πn+s (Pic (C)))⇒ πn

(
Pic

(
ChG

))
.

Related to this, note that π1 (Pic (ModR)) = R×, and since this is a 1-category
Pic doesn’t have higher homotopy groups, so in the spectral sequence above, the
elements in n = 0 (i.e. giving contribution to Pic

(
ModGR

)
) areH0 (G;π0 (Pic (ModR))) =

(Pic (ModR))G and H1 (G;π1 (Pic (ModR))) = H1 (G;R×), which explains the
relationship between first cohomology and the kernel KG

R .

Another interesting thing to note is that we have seen that Picn has a copy of
Z/2 (pn − 1) for the cases we have tabled. This can be seen as follows. We can
take K (n)-homology SpK(n) → ModK(n)∗ . Since K (n)∗ is a 2 (pn − 1)-periodic
graded field, the only invertible modules (up to isomorphism) are ΣkK (n) for
k = 0, 1, . . . , 2 (pn − 1)− 1, thus Pic

(
ModK(n)∗

)
= Z/2 (pn − 1), and this is the

copy we have seen.

Lastly, Pic (C) comes equipped with a natural topology. Given an element M ∈
Pic (C), we get an automorphismM⊗− : C→ C, which means that it sends com-
pact to objects to themselvesM⊗− : Cω → Cω. So we have an action of Pic (C)
on Cω. We define the open neighborhoods of the identity to be the stabilizers,
i.e. for every X ∈ Cω, we declare Stab (X) = {M ∈ Pic (C) |M ⊗X ∼= X} to
be open.
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