Algebraic K-Theory of Finite Fields

Shay Ben Moshe

01/04/2020

Some useful resources on the topic, besides Quillen's paper [Qui72], are [Hai; Mes; Pé]. A modern account of Quillen's plus construction, which we follow, is given in [Nik17].

1 Introduction

The goal of this talk is to explain Quillen's +-construction, from a modern point of view, and to use it to compute the algebraic K-theory of finite fields \mathbb{F}_q for q a power of p, following Quillen's paper, whose main result is

Theorem 1 (Quillen [Qui72]). The algebraic K-theory of \mathbb{F}_q is $\mathrm{K}_0(\mathbb{F}_q) = \mathbb{Z}$, $\mathrm{K}_{2i}(\mathbb{F}_q) = 0$ and $\mathrm{K}_{2i-1}(\mathbb{F}_q) = \mathbb{Z}/(q^i - 1)$.

Recall that we defined $K(R) = (\operatorname{Proj}_{\widetilde{R}}^{\simeq})^{\operatorname{gpc}}$, that is we take the commutative monoid given by the groupoid of finitely-generated projective *R*-modules together with addition given by direct sum, and then group complete (i.e. apply the adjoint of the inclusion Ab (S) $\rightarrow \operatorname{CMon}(S)$). In the case where R = F is a field, f.g. projective just means finite-dimensional, thus $\operatorname{Proj}_{\widetilde{F}}^{\simeq} = \operatorname{Vect}_{\widetilde{F}}^{\simeq} = \coprod \operatorname{BGL}_n(F)$. So $K(F) = (\coprod \operatorname{BGL}_n(F))^{\operatorname{gpc}}$.

The main two ingredients will be Quillen's +-construction, which is a way to compute the group completion, and a comparison with $K(\mathbb{C})$, which in turn is very related to *topological* K-theory, for which we have much more knowledge.

2 Quillen's +-Construction

The construction of algebraic K-theory involves taking group completion $M^{\text{gpc}} \in \text{Ab}(S)$. This is a complicated operation, and our first goal is to develop a computational tool to compute the underlying space $\underline{M}^{\text{gpc}} \in S$. Our first observation is

Proposition 2. Let $A \in Ab(S)$, then $\pi_0 A$ is an abelian group, and so is $\pi_1(A, a)$ for any point $a \in A$.

Proof. $\pi_0 A$ has the abelian group structure coming from multiplication.

Note that all the connected components of A are equivalent: for any $a \in A$ the map $x \mapsto xa^{-1}$ is invertible, and restricts to an equivalence between the connected component of a and that of 1. In particular $\pi_1(A, a) \cong \pi_1(A, 1)$, so we focus on $\pi_1(A, 1)$. This has an extra group structure on top of the usual one (concatenation) that comes from the multiplication. These two distribute over each other, so by the Eckmann-Hilton argument, they are the same and abelian, thus $\pi_1(A, 1)$ is an abelian group as well. \Box

Our approach to computing $\underline{M^{\text{gpc}}}$ is based on these two observations, that is we can try and "fix" π_0 and π_1 of M separately.

2.1 π_0 and the $(-)_{\infty}$ -Construction

We begin by considering a usual commutative monoid $M \in \text{CMon}$ (Set). The standard example is of course $\mathbb{N}^{\text{gpc}} = \mathbb{Z}$ obtained by inverting the element 1.

Definition 3. For $x \in M$, define $M_x = \operatorname{colim} \left(M \xrightarrow{x} M \xrightarrow{x} M \xrightarrow{x} \cdots \right)$. For a finite collection of elements $I \subseteq M$ define M_I by iterating the above colimit. Define $M_{\infty} = \operatorname{colim}_{I \subseteq M} M_I$ for all finite subsets $I \subseteq M$.

Proposition 4. $M_x = M[x^{-1}]$ (*i.e.* maps from M_x are the same as maps from M with x mapping to invertible).

Proof idea. We think about it as $\operatorname{colim}\left(M \to \frac{1}{x}M \to \frac{1}{x^2}M \to \cdots\right)$ i.e. write elements in the *n*-th place formally as $\frac{m}{x^n}$, and map $\frac{m}{x^n}$ to $\frac{mx}{x^{n+1}}$.

Corollary 5. Let $M \in \text{CMon}(\text{Set})$, then $M_{\infty} = M^{\text{gpc}}$.

We can try and mimic this in spaces, so let $M \in \text{CMon}(S)$.

Definition 6. For $x \in \pi_0 M$, define $M_x = \operatorname{colim} \left(M \xrightarrow{x} M \xrightarrow{x} M \xrightarrow{x} \cdots \right)$. For a finite collection of elements $I \subseteq \pi_0 M$ define M_I by iterating the colimit. Lastly, define $M_{\infty} = \operatorname{colim}_{I \subset \pi_0 M} M [I^{-1}]$ over finite subsets $I \subseteq \pi_0 M$.

Proposition 7. $\pi_0(M_\infty) = (\pi_0 M)_\infty = (\pi_0 M)^{\text{gpc}}$, in particular it is an abelian group.

Proof. π_0 is a left adjoint so commutes with colimits.

Because of that, we can think of the operation $(-)_{\infty}$ as "fixing" π_0 , and it is fairly concrete and easy to compute. By construction, there is a map $M_{\infty} \to M^{\text{gpc}}$, and one might hope that it is an equivalence, but this is *false* in general.

Example 8. Take $M = \coprod BGL_n(F)$. We can compute M_∞ by using a set of generators of $\pi_0 M$. In this case $\pi_0 M = \mathbb{N}$, and a generator is a point $x \in BGL_1(F)$. The operation here is given by going to the next connected components using (B of) $X \mapsto \begin{pmatrix} X \\ 1 \end{pmatrix}$. Taking the colimit we get $M_\infty = \mathbb{Z} \times BGL_\infty(F)$. In particular, note that $\pi_1 M_\infty = GL_\infty(F)$ (at any base-point) which is not abelian in general, so it can't be the case that $M_\infty = M^{\text{gpc}}$. Furthermore, one can show that the action of x on M_x (which we define below) is taking to the next connected component using (B of) $X \mapsto \begin{pmatrix} 1 \\ X \end{pmatrix}$, which is not invertible.

Let's explain what goes wrong. It is important to understand where these colim's are taking place. As we just saw, in our case $\pi_0 M = \mathbb{N}$ so that $M_{\infty} = M_x$ for x a generator, and we focus on this for simplicity. The map $M \xrightarrow{x} M$ is *not* a map of commutative of monoids (it doesn't even send 1 to 1!), so we can't take the colim in CMon(S). It is a map of spaces with an M-action, so we can take the colimit there (whose underlying space is the colimit computed in spaces). For that we need to say how M acts on M_x (as this is extra structure). At the very least, for every $y \in M$ we need a map $M_x \xrightarrow{y} M_x$. Consider the following diagram:

$$\begin{array}{c} M \xrightarrow{x} M \xrightarrow{x} M \xrightarrow{x} M \xrightarrow{x} M \xrightarrow{x} \cdots \\ \downarrow y \xrightarrow{\tau_{x,y}} \downarrow y \xrightarrow{\tau_{x,y}} \downarrow y \xrightarrow{\tau_{x,y}} \downarrow y \xrightarrow{\tau_{x,y}} \downarrow y \\ M \xrightarrow{x} M \xrightarrow{x} M \xrightarrow{x} M \xrightarrow{x} \cdots \end{array}$$

Since this is done in spaces, to say that the diagram commute we need to fill each square by a homotopy. The homotopy is given in the commutativity structure of M by paths $\tau_{x,y}: yx \rightsquigarrow xy$. This diagram then induces a map on the colimits $M_x \xrightarrow{y} M_x$.

The question is then why isn't $M_x \xrightarrow{x} M_x$ necessarily invertible? Note that in its definition we use the path $\tau_{x,x} : xx \rightsquigarrow xx$. This path need not be the constant path! (A familiar example is for X, Y sets, $\tau_{X,Y} : X \coprod Y \to Y \coprod X$ is an equivalence, and when Y = X we get the switch map which is not the identity.) Back to M, iterated multiplications yields the diagram

and commutativity is exhibited by the data of such a factorization. Taking π_1 we get $\Sigma_n \to \pi_1(M, x^n)$, which give obstructions to the invertibility of $M_x \xrightarrow{x} M_x$.

Theorem 9. The following are equivalent:

- 1. The canonical map $M_{\infty} \to M^{\text{gpc}}$ is an equivalence.
- 2. $\pi_1 M_{\infty}$ is abelian (for all base-points).
- 3. $\pi_1 M_{\infty}$ is hypoabelian (for all base-points).
- 4. The cycle $(12 \cdots n)$ is in the kernel of the composition $\Sigma_n \to \pi_1(M, x^n) \to \pi_1(M_\infty, x^n)$ for some $n \ge 2$.

Definition 10. A group P is called *perfect* if $P^{ab} = 1$ (i.e. [P, P] = P). A group G has a maximal perfect subgroup (because if $P_1, P_2 \leq G$ are perfect, then $\langle P_1, P_2 \rangle \leq G$ is perfect as well), and it is called *hypoabelian* if the maximal perfect subgroup is trivial (equivalently, the derived series terminates at 1 transfinitely, so this can be thought of as transfinitely solvable).

Remark 11. Note for n = 2, the map $\Sigma_2 \to \pi_1(M_\infty, x^2)$ appearing theorem 9, sends (12) to τ_{xx} . So saying that it is in the kernel means that τ_{xx} is null-homotopic.

2.2 π_1 and the $(-)^+$ -Construction

As we said, we have both a π_0 and a π_1 "problem", and our "fix" for π_0 didn't get us all the way to the group completion. The next step is to force π_1 to be hypoabelian.

Definition 12. Let $S^{\text{hypo}} \subseteq S$ be the full subcategory of spaces such that $\pi_1(X, x)$ is hypoabelian for all base-points.

Theorem 13. The inclusion $S^{hypo} \subseteq S$ has a left adjoint called the plus construction $(-)^+ : S \to S^{hypo}$.

Proof. We show that S^{hypo} is closed under limits. This follows from closure under (arbitrary) products which is immediate (since π_1 commutes with products and product of hypoabelian is hypoabelian), and closure under pullbacks. Let

be a pullback diagram where $X, Y, Z \in S^{\text{hypo}}$, and we want to show that $W \in S^{\text{hypo}}$ as well. We have a fibration $\Omega Z \to W \to X \times Y$, which leads to a long exact sequence of homotopy groups, $\dots \to \pi_2(Z) \to \pi_1(W) \to \pi_1(X) \times \pi_1(Y) \to \dots$, so $\pi_1(W)$ is an extension of a (hypo)abelian group and a hypoabelian group, therefore it is hypoabelian.

Remark 14. The reason we work with hypoabelian rather than abelian, is that spaces with abelian π_1 are not closed under limits, so a left adjoint does not exist.

Proposition 15. $X \to X^+$ is a homology equivalence.

Proof. For any (usual) abelian group A of course $B^n A \in S^{hypo}$ so by adjunction Map $(X^+, B^n A) = Map(X, B^n A)$ so that $H^n(X^+; A) = H^n(X; A)$. Using universal coefficient theorem, the result follows for homology.

Proposition 16. $(-)^+$ commutes with products, and in particular we also get $(-)^+$: $\operatorname{CMon}(S) \to \operatorname{CMon}(S^{\text{hypo}}).$

Proof. First, note that $\operatorname{Map}(X, Z) = \operatorname{Map}(\operatorname{colim}_X *, Z) = \lim_X Z$ so if $Z \in S^{\text{hypo}}$ then by closure under limits so is $\operatorname{Map}(X, Z)$.

Now, by Yoneda, for any $X, Y \in S$ and $Z \in S^{\text{hypo}}$ we have

$$\begin{aligned} \operatorname{Map}\left(\left(X \times Y\right)^{+}, Z\right) &= \operatorname{Map}\left(X \times Y, Z\right) \\ &= \operatorname{Map}\left(X, \operatorname{Map}\left(Y, Z\right)\right) \\ &= \operatorname{Map}\left(X^{+}, \operatorname{Map}\left(Y^{+}, Z\right)\right) \\ &= \operatorname{Map}\left(X^{+} \times Y^{+}, Z\right) \end{aligned}$$

Theorem 17. Let $M \in \text{CMon}(S)$ then $(M_{\infty})^+ = (M^+)_{\infty} = M^{\text{gpc}}$ (as spaces).

Proof. Recall that we have maps $M \to M_{\infty} \to M^{\text{gpc}}$. Since M^{gpc} has (hypo)abelian π_1 , by adjunction we get a commutative square

The bottom map is an equivalence, because the commutative monoid M^+ has hypoabelian π_1 so by theorem 9 $(M^+)_{\infty} = (M^+)^{\text{gpc}}$.

The right map is an equivalence, because $Ab(S) \subseteq CMon(S^{hypo}) \subseteq CMon(S)$ and so the adjoints are equivalent $((-)^+)^{gpc} = (-)^{gpc}$.

We show that the left map is an equivalence using Yoneda. For simplicity assume again

that π_0 is generated by a single element x, then for any Z

$$\operatorname{Map}\left(\left(M_{\infty}\right)^{+}, Z\right) = \operatorname{Map}\left(M_{\infty}, Z\right)$$
$$= \operatorname{Map}\left(\operatorname{colim}\left(M \xrightarrow{x} M \xrightarrow{x} \cdots\right), Z\right)$$
$$= \operatorname{lim}\left(\operatorname{Map}\left(M, Z\right) \xrightarrow{x} \operatorname{Map}\left(M, Z\right) \xrightarrow{x} \cdots\right)$$
$$= \operatorname{lim}\left(\operatorname{Map}\left(M^{+}, Z\right) \xrightarrow{x} \operatorname{Map}\left(M^{+}, Z\right) \xrightarrow{x} \cdots\right)$$
$$= \operatorname{Map}\left(\operatorname{colim}\left(M^{+} \xrightarrow{x} M^{+} \xrightarrow{x} \cdots\right), Z\right)$$
$$= \operatorname{Map}\left(\left(M^{+}\right)_{\infty}, Z\right)$$

And the top map is an equivalence because the three others are.

3 Topological K-Theory

When we compute $\mathcal{K}(\mathbb{C}) = (\operatorname{Vect}_{\mathbb{C}}^{\widetilde{\mathbb{C}}})^{\operatorname{gpc}}$ we consider $\operatorname{Vect}_{\mathbb{C}}^{\widetilde{\mathbb{C}}} = \coprod \operatorname{BGL}_n(\mathbb{C})$. It is important to note that \mathbb{C} is regarded as a *discrete* field, and so $\operatorname{GL}_n(\mathbb{C})$ is also a *discrete* group. We could do a topological version that takes into account the topology on \mathbb{C} , i.e. replace $\operatorname{Vect}_{\mathbb{C}}^{\widetilde{\mathbb{C}}}$ by $\operatorname{Vect}_{\mathbb{C}}^{\widetilde{\mathbb{C}},\operatorname{top}} = \coprod \operatorname{BGL}_n^{\operatorname{top}}(\mathbb{C}) = \coprod \operatorname{BU}(n)$ (the spaces $\operatorname{BGL}_n^{\operatorname{top}}(\mathbb{C})$ and $\operatorname{BU}(n)$ are indeed equivalent, essentially by Gram-Schmidt), and we get

Definition 18. $\mathrm{K}^{\mathrm{top}}(\mathbb{C}) = \left(\mathrm{Vect}_{\mathbb{C}}^{\cong,\mathrm{top}}\right)^{\mathrm{gpc}} = (\coprod \mathrm{BU}(n))^{\mathrm{gpc}}.$

Theorem 19. $\mathrm{K}^{\mathrm{top}}(\mathbb{C}) = \mathbb{Z} \times \mathrm{BU}.$

Proof. Note that $(\coprod BU_n)_{\infty} = \mathbb{Z} \times BU$ as we have seen before. Furthermore, $\pi_1 (\mathbb{Z} \times BU) = \pi_0 U$, so since U we get that $\pi_1 = 0$. In particular it is (hypo)abelian, so by theorem 9 we know that $(\coprod BU(n))_{\infty} = (\coprod BU(n))^{\text{gpc}}$.

 $\mathrm{K}^{\mathrm{top}}(\mathbb{C}) = \mathbb{Z} \times \mathrm{BU}$ is known as connective topological K-theory (as a connective spectrum it is usually denoted by ku). This space classifies virtual (i.e. formal differences of) vector bundles up to stable isomorphism. Namely, $\mathrm{BU}(n)$ classifies rank n vector bundles, by their equivalence with $\mathrm{U}(n)$ -principal bundles. Then one can show that $\mathrm{KU}(X) :=$ $\pi_0 \mathrm{Map}(X, \mathbb{Z} \times \mathrm{BU})$ is the set of virtual vector bundles on X modulo $V \sim U$ iff $V \oplus \mathbb{C}^k \cong$ $V \oplus \mathbb{C}^k$ for some k. This object was studied heavily, and in particular satisfies

Theorem 20 (Bott Periodicity). $\pi_n (\mathbb{Z} \times BU) = KU(S^n) = \begin{cases} \mathbb{Z} & n = 2k \\ 0 & n = 2k-1 \end{cases}$.

4 Proof of the Main Theorem

Recall that our goal was to compute $K(\mathbb{F}_q)$. We will do this using the +-construction, i.e. we would like to understand $\mathbb{Z} \times BGL_{\infty}(\mathbb{F}_q)^+$. We will do this by a comparison with $K^{top}(\mathbb{C})$, namely we will construct a map $\theta : BGL_{\infty}(\mathbb{F}_q) \to BU^{\psi^q}$, where BU^{ψ^q} is some fixed points of BU whose homotopy groups are easy to compute. Then we show that θ induces an isomorphism on $H_*(-;\mathbb{Z})$, thus so does $BGL_{\infty}(\mathbb{F}_q)^+ \to BU^{\psi^q}$, from which we will conclude that it is a homotopy equivalence, and finish the proof.

The existence of θ may seem very odd at first. Doing this for all q is almost the same as mapping $\operatorname{GL}_n\left(\overline{\mathbb{F}}_p\right) \to \operatorname{U}(n)$, the first being a discrete group and the second a compact Lie group. These objects are not as far from each other as one may think. Consider the case $\operatorname{GL}_1\left(\overline{\mathbb{F}}_p\right) \to \operatorname{U}(1)$ i.e. $\overline{\mathbb{F}}_p^{\times} \to \operatorname{U}(1)$. We note that $\overline{\mathbb{F}}_p^{\times} = \operatorname{colim} \mathbb{F}_{p^k}^{\times} \stackrel{\text{non-canonically}}{\cong}$ $\operatorname{colim} \mathbb{Z}/\left(p^k - 1\right) = \bigoplus_{\ell \neq p} \mathbb{Z}/\ell^{\infty}$, and \mathbb{Z}/ℓ^{∞} canonically injects into U(1) as ℓ -th power roots of unity. Therefore, we get a (non-canonical) injection $\sigma : \overline{\mathbb{F}}_p^{\times} \hookrightarrow \operatorname{U}(1)$. This may still seem far off, but in fact $\mathbb{B}\mathbb{Z}/\ell^{\infty} \to \mathrm{BU}(1)$ is a homotopy equivalence after ℓ -adic completion though we will not use this fact. Our next step is to bootstrap σ to get θ .

4.1 Brauer Lifts

To fix notation, $\operatorname{Rep}_F(G)$ is the semi-ring of representations of G over F up to isomorphisms, and $R_F(G)$ is the representation ring (= $\operatorname{Rep}_F(G)^{\operatorname{gpc}}$). Quillen used a technique he called Brauer lifts to bootstrap the σ , building on the following theorem

Theorem 21 (Green [Gre55]). Let G be a finite group and $\rho \in \operatorname{Rep}_{\overline{\mathbb{F}}_p}(G)$. Define $\chi_{\rho}: G \to U(1)$ by $\chi_{\rho}(g) = \sum_{\lambda \in \operatorname{ev}\rho(g)} \sigma(\lambda)$ where the sum is over the eigenvalues (with multiplicity). Then χ is the character of a virtual complex representation of G.

This allows us to lift representations from $\overline{\mathbb{F}}_p$ to \mathbb{C} , one we choose the map $\sigma : \overline{\mathbb{F}}_p^{\times} \hookrightarrow U(1)$ from before, i.e. we get a map $\operatorname{Rep}_{\overline{\mathbb{F}}_p}(G) \to R_{\mathbb{C}}(G)$ (which obviously preserves \oplus, \otimes so it is a map of (semi-)rings).

We know that $R_{\mathbb{C}}(G) = \operatorname{Rep}_{\mathbb{C}}(G)^{\operatorname{gpc}} = \pi_0 (\operatorname{Map}(\operatorname{BG}, \coprod \operatorname{BU}(n))^{\operatorname{gpc}})$. Furthermore, (by adjunction) there is a map $\operatorname{Map}(\operatorname{BG}, \coprod \operatorname{BU}(n))^{\operatorname{gpc}} \to \operatorname{Map}(\operatorname{BG}, (\coprod \operatorname{BU}(n))^{\operatorname{gpc}})$, taking π_0 we get a map $R_{\mathbb{C}}(G) \to \operatorname{KU}(\operatorname{BG})$ (known from the Atiyah-Segal theorem). Combining everything we get a map $\operatorname{Rep}_{\overline{\mathbb{F}}_n}(G) \to R_{\mathbb{C}}(G) \to \operatorname{KU}(\operatorname{BG})$.

4.2 Galois Action and Adams Operations

All of the representation (semi-)rings, character rings and topological K-theory, have extra structure: the exterior powers $\Lambda^k : R \to R$. In fact this endows R with the structure of λ -(semi-)ring, but we do not have time to give precise definitions. In a general ring, there is another way to encode the λ -structure by a collection of maps called the Adams operations $\psi^k : R \to R$. Although less familiar, they have various nice properties (which in fact uniquely characterize them in our cases):

- 1. $\psi^k : R \to R$ is a ring homomorphism.
- 2. For any "line element" (line-bundle or 1-dimensional representation) $\psi^k(L) = L^k$.

3.
$$\psi^k \psi^m = \psi^{km}$$
.

Proposition 22. The action of ψ^k on characters of (virtual) representations is given by $(\psi^k \chi)(g) = \chi(g^k)$.

Proposition 23. For a representation $\rho \in \operatorname{Rep}_{\mathbb{F}_q}(G) \subseteq \operatorname{Rep}_{\overline{\mathbb{F}}_p}(G)$, the induced character satisfies $\psi^q \chi_{\rho} = \chi_{\rho}$, i.e. χ_{ρ} is a ψ^q fixed point.

Proof. By definition, ρ is a fixed point of Frob^q so $\chi_{\rho} = \chi_{\operatorname{Frob}^q \rho}$. For a matrix A over $\overline{\mathbb{F}}_p$ with eigenvalues λ_i , the eigenvalues of $\operatorname{Frob}^q A$ are $\operatorname{Frob}^q(\lambda_i) = \lambda_i^q$, which are also the eigenvalues of A^q , so we get

$$\chi_{\rho}(g) = \chi_{\operatorname{Frob}^{q}\rho}(g) = \sum_{\lambda \in \operatorname{ev}(\operatorname{Frob}^{q}\rho(g))} \sigma(\lambda) = \sum_{\lambda \in \operatorname{ev}(\rho(g^{q}))} \sigma(\lambda) = \chi_{\rho}(g^{q}) = (\psi^{q}\chi_{\rho})(g)$$

By a Yoneda argument, we can see that ψ^q acts on BU (representing KU). One can show that $\text{KU}(\text{B}G)^{\psi^q} = \pi_0 \text{Map}(\text{B}G, \mathbb{Z} \times \text{BU})^{\psi^q} = \pi_0 \text{Map}(\text{B}G, \mathbb{Z} \times \text{BU}^{\psi^q})$ (using the fact that $\text{KU}^1(\text{B}G) = 0$, as follows from the Atiyah-Segal theorem).

Theorem 24.
$$\pi_{2n-1}\left(\mathrm{BU}^{\psi^q}\right) = \mathbb{Z}/(q^n-1) \text{ and } \pi_{2n}\left(\mathrm{BU}^{\psi^q}\right) = 0.$$

Proof. Recall from theorem 20 that π_{2n} (BU) = \mathbb{Z} (and vanishes in odd degrees), it is known that ψ^q acts on it by multiplication by q^n . The fixed points can be computed as the fiber BU^{ψ^q} \rightarrow BU $\xrightarrow{\psi^q - \mathrm{id}}$ BU. This give a LES in homotopy groups

$$0 \to \pi_{2n} \left(\mathrm{BU}^{\psi^q} \right) \to \mathbb{Z} \xrightarrow{q^n - 1} \mathbb{Z} \to \pi_{2n-1} \left(\mathrm{BU}^{\psi^q} \right) \to 0$$

and the result follows.

Our map $\operatorname{Rep}_{\mathbb{F}_p}(G) \to R_{\mathbb{C}}(G) \to \operatorname{KU}(\operatorname{B} G)$ is easily seen to preserve the exterior powers Λ^k , and therefore also preserve the Adams operations. Therefore, by the above, the restriction to $\operatorname{Rep}_{\mathbb{F}_q}(G)$ lands in $\operatorname{KU}(\operatorname{B} G)^{\psi^q}$. Combining all of this we get a map $\operatorname{Rep}_{\mathbb{F}_q}(G) \to \pi_0 \operatorname{Map}\left(\operatorname{B} G, \mathbb{Z} \times \operatorname{BU}^{\psi^q}\right)$.

4.3 The Map θ and Conclusion of the Proof

We can do a Yoneda-style argument, take $G = \operatorname{GL}_n(\mathbb{F}_q)$ and the regular representation \mathbb{F}_q^n . In this case we get a map $\operatorname{BGL}_n(\mathbb{F}_q) \to \mathbb{Z} \times \operatorname{BU}^{\psi^q}$, and since the source is connected we get $\theta_n : \operatorname{BGL}_n(\mathbb{F}_q) \to \operatorname{BU}^{\psi^q}$. These maps are compatible, and we get $\theta : \operatorname{BGL}_\infty(\mathbb{F}_q) \to \operatorname{BU}^{\psi^q}$.

Most of Quillen's paper is in fact dedicated to the following, which we do not have enough time to explain.

Theorem 25. The map θ : BGL_{∞} (\mathbb{F}_q) \rightarrow BU^{ψ^q} induces an isomorphism on H_{*}(-; \mathbb{Z}).

Proof (very rough outline). By the universal coefficient theorem it is enough to check that it is an isomorphism with coefficients \mathbb{Q} , \mathbb{Z}/p and \mathbb{Z}/ℓ for $\ell \neq p$.

By the computation of $\pi_*(\mathrm{BU}^{\psi^q})$ we see that it vanishes rationally and mod p, thus we need to prove the same for $\mathrm{BGL}_{\infty}(\mathbb{F}_q)$.

It is a well known and easy result that for a finite group G, $\tilde{H}_*(BG; \mathbb{Q}) = 0$. Then we get $\tilde{H}_*(BGL_{\infty}(\mathbb{F}_q); \mathbb{Q}) = \tilde{H}_*(\operatorname{colim} BGL_n(\mathbb{F}_q); \mathbb{Q}) = \operatorname{colim} \tilde{H}_*(BGL_n(\mathbb{F}_q); \mathbb{Q}) = 0$.

To prove that $\tilde{H}_*(BGL_n(\mathbb{F}_q);\mathbb{Z}/p) = 0$, one first uses a comparison with $n \times n$ upper triangular matrices, inductively on n, from which it follows for $* < \nu (p-1)$ where $q = p^{\nu}$. Then, using a transfer argument, i.e. passing to bigger fields \mathbb{F}_{q^r} , one gets the result for all *.

The hardest part is then to show that θ induces an isomorphism on $H_*(-; \mathbb{Z}/\ell)$ for $\ell \neq p$. The first part concerns BU^{ψ^q} . Quillen applies the pullback ("Eilenberg-Moore") spectral sequence to

$$\begin{array}{c} \mathrm{BU}^{\psi^{q}} \longrightarrow \mathrm{BU}^{[0,1]} \\ \downarrow \\ \mathrm{BU} \xrightarrow{(\mathrm{id},\psi^{q})} \mathrm{BU} \times \mathrm{BU} \end{array}$$

the cohomology of BU is well known, and the spectral sequence collapses at the E_2 -page, which gives some of the information about $\mathrm{H}^*\left(\mathrm{BU}^{\psi^q};\mathbb{Z}/\ell\right)$. The next ingredient is the group $C = \mathbb{F}_q(\zeta_\ell)^*$, and its \mathbb{F}_q representation $\mathbb{F}_q(\zeta_\ell)$ (and powers of them). This has Brauer lift that can be described explicitly. It is encoded by $\mathrm{B}C \to \mathrm{BGL}_n(\mathbb{F}_q) \to \mathrm{BU}^{\psi^q}$ (for suitable n), and the induced map on cohomology $\mathrm{H}^*\left(\mathrm{BU}^{\psi^q};\mathbb{Z}/\ell\right) \to \mathrm{H}^*(\mathrm{B}C;\mathbb{Z}/\ell)$ gives enough information to finish the computation of $\mathrm{H}^*\left(\mathrm{BU}^{\psi^q};\mathbb{Z}/\ell\right)$ and its homology. Lastly, using the factorization through $\mathrm{BGL}_n(\mathbb{F}_q)$, Quillen imports the data from both of these to the homology of $\mathrm{BGL}_n(\mathbb{F}_q)$, showing the desired isomorphism.

Recall from 15 that the +-construction is a homology equivalence, therefore we get that $\mathrm{K}(\mathbb{F}_q) = (\mathbb{Z} \times \mathrm{BGL}_{\infty}(\mathbb{F}_q))^+ \to \mathbb{Z} \times \mathrm{BU}^{\psi^q}$ inclues an isomorphism on $\mathrm{H}_*(-;\mathbb{Z})$ as well.

Theorem 26 (Emmanuel Farjoun [Dro71]). Let $f : X \to Y$ be a map of simple spaces (abelian π_1 , acting trivially on π_n). If f induces an isomorphism on $H_*(-;\mathbb{Z})$, then it is also a homotopy equivalence.

This is a generalization of the standard Whitehead theorem. It is known that the underlying space of any object of Ab (S) is simple, so K (\mathbb{F}_q) is simple. Furthermore, the fibration used to compute the homotopy groups of BU^{ψ^q} also shows that it is simple. Therefore, K (\mathbb{F}_q) $\to \mathbb{Z} \times \mathrm{BU}^{\psi^q}$ is an equivalence, and the main result follows

Theorem 27 (Quillen [Qui72]). The algebraic K-theory of \mathbb{F}_q is $\mathrm{K}_0(\mathbb{F}_q) = \mathbb{Z}$, $\mathrm{K}_{2i}(\mathbb{F}_q) = 0$ and $\mathrm{K}_{2i-1}(\mathbb{F}_q) = \mathbb{Z}/(q^i - 1)$.

References

- [Dro71] Emmanuel Dror. "A generalization of the whitehead theorem". In: Symposium on Algebraic Topology Lecture Notes in Mathematics (1971).
- [Gre55] J. A. Green. "The characters of the finite general linear groups". In: Transactions of the American Mathematical Society (1955).
- [Hai] J. Peter Haine. On The K-Theory of Finite Fields. URL: http://math.mit. edu/~phaine/files/KFF.pdf.
- [Mes] David Mestel. Algebraic K-Theory of Finite Fields. URL: http://www.cs.ox. ac.uk/people/david.mestel/essay.pdf.
- [Nik17] Thomas Nikolaus. The group completion theorem via localizations of ring spectra. 2017. URL: https://www.uni-muenster.de/IVV5WS/WebHop/user/ nikolaus/Papers/Group_completion.pdf.
- [Pé] Maximilien Péroux. K-Theory of Finite Fields. URL: http://homepages. math.uic.edu/~mholmb2/Ktheofin.pdf.
- [Qui72] Daniel Quillen. "On the Cohomology and K-Theory of the General Linear Groups Over a Finite Field". In: *The Annals of Mathematics* (1972).