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Some useful resources on the topic, besides Quillen’s paper [Qui72], are [Hai; Mes; Pé].
A modern account of Quillen’s plus construction, which we follow, is given in [Nik17].

1 Introduction

The goal of this talk is to explain Quillen’s +-construction, from a modern point of view,
and to use it to compute the algebraic K-theory of finite fields Fq for q a power of p,
following Quillen’s paper, whose main result is

Theorem 1 (Quillen [Qui72]). The algebraic K-theory of Fq is K0 (Fq) = Z, K2i (Fq) = 0
and K2i−1 (Fq) = Z/

(
qi − 1

)
.

Recall that we defined K (R) = (Proj'R)gpc, that is we take the commutative monoid
given by the groupoid of finitely-generated projective R-modules together with addition
given by direct sum, and then group complete (i.e. apply the adjoint of the inclusion
Ab (S) → CMon (S)). In the case where R = F is a field, f.g. projective just means
finite-dimensional, thus Proj'F = Vect'F =

∐
BGLn (F ). So K (F ) = (

∐
BGLn (F ))gpc.

The main two ingredients will be Quillen’s +-construction, which is a way to compute
the group completion, and a comparison with K (C), which in turn is very related to
topological K-theory, for which we have much more knowledge.

2 Quillen’s +-Construction

The construction of algebraic K-theory involves taking group completion Mgpc ∈ Ab (S).
This is a complicated operation, and our first goal is to develop a computational tool to
compute the underlying space Mgpc ∈ S. Our first observation is

Proposition 2. Let A ∈ Ab (S), then π0A is an abelian group, and so is π1 (A, a) for
any point a ∈ A.
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Proof. π0A has the abelian group structure coming from multiplication.

Note that all the connected components of A are equivalent: for any a ∈ A the map
x 7→ xa−1 is invertible, and restricts to an equivalence between the connected component
of a and that of 1. In particular π1 (A, a) ∼= π1 (A, 1), so we focus on π1 (A, 1). This
has an extra group structure on top of the usual one (concatenation) that comes from
the multiplication. These two distribute over each other, so by the Eckmann-Hilton
argument, they are the same and abelian, thus π1 (A, 1) is an abelian group as well.

Our approach to computing Mgpc is based on these two observations, that is we can try
and “fix” π0 and π1 of M separately.

2.1 π0 and the (−)∞-Construction

We begin by considering a usual commutative monoid M ∈ CMon (Set). The standard
example is of course Ngpc = Z obtained by inverting the element 1.

Definition 3. For x ∈ M , define Mx = colim
(
M

x−→M
x−→M

x−→ · · ·
)
. For a finite

collection of elements I ⊆ M define MI by iterating the above colimit. Define M∞ =
colimI⊆M MI for all finite subsets I ⊆M .

Proposition 4. Mx = M
[
x−1] (i.e. maps from Mx are the same as maps from M with

x mapping to invertible).

Proof idea. We think about it as colim
(
M → 1

xM →
1
x2M → · · ·

)
i.e. write elements

in the n-th place formally as m
xn , and map m

xn to mx
xn+1 .

Corollary 5. Let M ∈ CMon (Set), then M∞ = Mgpc.

We can try and mimic this in spaces, so let M ∈ CMon (S).

Definition 6. For x ∈ π0M , define Mx = colim
(
M

x−→M
x−→M

x−→ · · ·
)
. For a finite

collection of elements I ⊆ π0M define MI by iterating the colimit. Lastly, define M∞ =
colimI⊆π0M M

[
I−1] over finite subsets I ⊆ π0M .

Proposition 7. π0 (M∞) = (π0M)∞ = (π0M)gpc, in particular it is an abelian group.

Proof. π0 is a left adjoint so commutes with colimits.

Because of that, we can think of the operation (−)∞ as “fixing” π0, and it is fairly
concrete and easy to compute. By construction, there is a map M∞ → Mgpc, and one
might hope that it is an equivalence, but this is false in general.
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Example 8. Take M =
∐

BGLn (F ). We can compute M∞ by using a set of generators
of π0M . In this case π0M = N, and a generator is a point x ∈ BGL1 (F ). The operation

here is given by going to the next connected components using (B of) X 7→
(
X

1

)
.

Taking the colimit we get M∞ = Z × BGL∞ (F ). In particular, note that π1M∞ =
GL∞ (F ) (at any base-point) which is not abelian in general, so it can’t be the case that
M∞ = Mgpc. Furthermore, one can show that the action of x on Mx (which we define

below) is taking to the next connected component using (B of) X 7→
(

1
X

)
, which is

not invertible.

Let’s explain what goes wrong. It is important to understand where these colim’s are
taking place. As we just saw, in our case π0M = N so that M∞ = Mx for x a generator,
and we focus on this for simplicity. The map M

x−→ M is not a map of commutative of
monoids (it doesn’t even send 1 to 1!), so we can’t take the colim in CMon (S). It is
a map of spaces with an M -action, so we can take the colimit there (whose underlying
space is the colimit computed in spaces). For that we need to say how M acts on Mx (as
this is extra structure). At the very least, for every y ∈ M we need a map Mx

y−→ Mx.
Consider the following diagram:

M
x //

y

��

M
x //

y

��
τx,y

y�

M
x //

y

��
τx,y

y�

M
x //

y

��
τx,y

y�

· · ·

M
x //M

x //M
x //M

x // · · ·

Since this is done in spaces, to say that the diagram commute we need to fill each square
by a homotopy. The homotopy is given in the commutativity structure of M by paths
τx,y : yx xy. This diagram then induces a map on the colimits Mx

y−→Mx.

The question is then why isn’t Mx
x−→ Mx necessarily invertible? Note that in its def-

inition we use the path τx,x : xx  xx. This path need not be the constant path!
(A familiar example is for X,Y sets, τX,Y : X

∐
Y → Y

∐
X is an equivalence, and

when Y = X we get the switch map which is not the identity.) Back to M , iterated
multiplications yields the diagram

∗
(x,...,x) //

��

Mn mult //

��

M

∗//Σn
//Mn//Σn

::

and commutativity is exhibited by the data of such a factorization. Taking π1 we get
Σn → π1 (M,xn), which give obstructions to the invertibility of Mx

x−→Mx.

Theorem 9. The following are equivalent:
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1. The canonical map M∞ →Mgpc is an equivalence.

2. π1M∞ is abelian (for all base-points).

3. π1M∞ is hypoabelian (for all base-points).

4. The cycle (12 · · ·n) is in the kernel of the composition Σn → π1 (M,xn) →
π1 (M∞, xn) for some n ≥ 2.

Definition 10. A group P is called perfect if P ab = 1 (i.e. [P, P ] = P ). A group G
has a maximal perfect subgroup (because if P1, P2 ≤ G are perfect, then 〈P1, P2〉 ≤ G
is perfect as well), and it is called hypoabelian if the maximal perfect subgroup is trivial
(equivalently, the derived series terminates at 1 transfinitely, so this can be thought of
as transfinitely solvable).

Remark 11. Note for n = 2, the map Σ2 → π1
(
M∞, x

2) appearing theorem 9, sends
(12) to τxx. So saying that it is in the kernel means that τxx is null-homotopic.

2.2 π1 and the (−)+-Construction

As we said, we have both a π0 and a π1 “problem”, and our “fix” for π0 didn’t get us all
the way to the group completion. The next step is to force π1 to be hypoabelian.

Definition 12. Let Shypo ⊆ S be the full subcategory of spaces such that π1 (X,x) is
hypoabelian for all base-points.

Theorem 13. The inclusion Shypo ⊆ S has a left adjoint called the plus construction
(−)+ : S→ Shypo.

Proof. We show that Shypo is closed under limits. This follows from closure under (ar-
bitrary) products which is immediate (since π1 commutes with products and product of
hypoabelian is hypoabelian), and closure under pullbacks. Let

W //

��

X

��
Y // Z

be a pullback diagram where X,Y, Z ∈ Shypo, and we want to show that W ∈ Shypo as
well. We have a fibration ΩZ → W → X × Y , which leads to a long exact sequence of
homotopy groups, · · · → π2 (Z) → π1 (W ) → π1 (X) × π1 (Y ) → · · · , so π1 (W ) is an
extension of a (hypo)abelian group and a hypoabelian group, therefore it is hypoabelian.

Remark 14. The reason we work with hypoabelian rather than abelian, is that spaces
with abelian π1 are not closed under limits, so a left adjoint does not exist.
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Proposition 15. X → X+ is a homology equivalence.

Proof. For any (usual) abelian groupA of course BnA ∈ Shypo so by adjunction Map
(
X+,BnA

)
=

Map (X,BnA) so that Hn
(
X+;A

)
= Hn (X;A). Using universal coefficient theorem, the

result follows for homology.

Proposition 16. (−)+ commutes with products, and in particular we also get (−)+ :
CMon (S)→ CMon

(
Shypo

)
.

Proof. First, note that Map (X,Z) = Map (colimX ∗, Z) = limX Z so if Z ∈ Shypo then
by closure under limits so is Map (X,Z).

Now, by Yoneda, for any X,Y ∈ S and Z ∈ Shypo we have

Map
(
(X × Y )+ , Z

)
= Map (X × Y,Z)

= Map (X,Map (Y,Z))

= Map
(
X+,Map

(
Y +, Z

))
= Map

(
X+ × Y +, Z

)

Theorem 17. Let M ∈ CMon (S) then (M∞)+ =
(
M+)

∞ = Mgpc (as spaces).

Proof. Recall that we have maps M →M∞ →Mgpc. Since Mgpc has (hypo)abelian π1,
by adjunction we get a commutative square

(M∞)+ //

��

Mgpc

��(
M+)

∞
//
(
M+)gpc

The bottom map is an equivalence, because the commutative monoid M+ has hypoa-
belian π1 so by theorem 9

(
M+)

∞ =
(
M+)gpc.

The right map is an equivalence, because Ab (S) ⊆ CMon
(
Shypo

)
⊆ CMon (S) and so

the adjoints are equivalent
(
(−)+

)gpc
= (−)gpc.

We show that the left map is an equivalence using Yoneda. For simplicity assume again
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that π0 is generated by a single element x, then for any Z

Map
(
(M∞)+ , Z

)
= Map (M∞, Z)

= Map
(
colim

(
M

x−→M
x−→ · · ·

)
, Z
)

= lim
(
Map (M,Z) x−→ Map (M,Z) x−→ · · ·

)
= lim

(
Map

(
M+, Z

)
x−→ Map

(
M+, Z

)
x−→ · · ·

)
= Map

(
colim

(
M+ x−→M+ x−→ · · ·

)
, Z
)

= Map
((
M+

)
∞
, Z
)

And the top map is an equivalence because the three others are.

3 Topological K-Theory

When we compute K (C) = (Vect'C )gpc we consider Vect'C =
∐

BGLn (C). It is important
to note that C is regarded as a discrete field, and so GLn (C) is also a discrete group.
We could do a topological version that takes into account the topology on C, i.e. replace
Vect'C by Vect',top

C =
∐

BGLtop
n (C) =

∐
BU (n) (the spaces BGLtop

n (C) and BU (n) are
indeed equivalent, essentially by Gram-Schmidt), and we get

Definition 18. Ktop (C) =
(
Vect',top

C

)gpc
= (
∐

BU (n))gpc.

Theorem 19. Ktop (C) = Z× BU.

Proof. Note that (
∐

BUn)∞ = Z×BU as we have seen before. Furthermore, π1 (Z× BU) =
π0U, so since U we get that π1 = 0. In particular it is (hypo)abelian, so by theorem 9
we know that (

∐
BU (n))∞ = (

∐
BU (n))gpc.

Ktop (C) = Z×BU is known as connective topological K-theory (as a connective spectrum
it is usually denoted by ku). This space classifies virtual (i.e. formal differences of) vector
bundles up to stable isomorphism. Namely, BU (n) classifies rank n vector bundles,
by their equivalence with U (n)-principal bundles. Then one can show that KU (X) :=
π0Map (X,Z× BU) is the set of virtual vector bundles on X modulo V ∼ U iff V ⊕Ck ∼=
V ⊕ Ck for some k. This object was studied heavily, and in particular satisfies

Theorem 20 (Bott Periodicity). πn (Z× BU) = KU (Sn) =
{
Z n = 2k
0 n = 2k − 1

.
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4 Proof of the Main Theorem

Recall that our goal was to compute K (Fq). We will do this using the +-construction,
i.e. we would like to understand Z×BGL∞ (Fq)+. We will do this by a comparison with
Ktop (C), namely we will construct a map θ : BGL∞ (Fq)→ BUψq , where BUψq is some
fixed points of BU whose homotopy groups are easy to compute. Then we show that θ
induces an isomorphism on H∗ (−;Z), thus so does BGL∞ (Fq)+ → BUψq , from which
we will conclude that it is a homotopy equivalence, and finish the proof.

The existence of θ may seem very odd at first. Doing this for all q is almost the same as
mapping GLn

(
Fp
)
→ U (n), the first being a discrete group and the second a compact

Lie group. These objects are not as far from each other as one may think. Consider

the case GL1
(
Fp
)
→ U (1) i.e. F×p → U (1). We note that F×p = colimF×

pk

non-canonically∼=
colimZ/

(
pk − 1

)
= ⊕ 6̀=pZ/`∞, and Z/`∞ canonically injects into U (1) as `-th power

roots of unity. Therefore, we get a (non-canonical) injection σ : F×p ↪→ U (1). This may
still seem far off, but in fact BZ/`∞ → BU (1) is a homotopy equivalence after `-adic
completion though we will not use this fact. Our next step is to bootstrap σ to get θ.

4.1 Brauer Lifts

To fix notation, RepF (G) is the semi-ring of representations of G over F up to isomor-
phisms, and RF (G) is the representation ring (= RepF (G)gpc). Quillen used a technique
he called Brauer lifts to bootstrap the σ, building on the following theorem

Theorem 21 (Green [Gre55]). Let G be a finite group and ρ ∈ RepFp
(G). Define

χρ : G → U (1) by χρ (g) =
∑
λ∈evρ(g) σ (λ) where the sum is over the eigenvalues (with

multiplicity). Then χ is the character of a virtual complex representation of G.

This allows us to lift representations from Fp to C, one we choose the map σ : F×p ↪→ U (1)
from before, i.e. we get a map RepFp

(G)→ RC (G) (which obviously preserves ⊕,⊗ so
it is a map of (semi-)rings).

We know that RC (G) = RepC (G)gpc = π0 (Map (BG,
∐

BU (n))gpc). Furthermore, (by
adjunction) there is a map Map (BG,

∐
BU (n))gpc → Map (BG, (

∐
BU (n))gpc), taking

π0 we get a map RC (G)→ KU (BG) (known from the Atiyah-Segal theorem). Combin-
ing everything we get a map RepFp

(G)→ RC (G)→ KU (BG).

4.2 Galois Action and Adams Operations

All of the representation (semi-)rings, character rings and topological K-theory, have
extra structure: the exterior powers Λk : R → R. In fact this endows R with the
structure of λ-(semi-)ring, but we do not have time to give precise definitions. In a
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general ring, there is another way to encode the λ-structure by a collection of maps
called the Adams operations ψk : R→ R. Although less familiar, they have various nice
properties (which in fact uniquely characterize them in our cases):

1. ψk : R→ R is a ring homomorphism.

2. For any “line element” (line-bundle or 1-dimensional representation) ψk (L) = Lk.

3. ψkψm = ψkm.

Proposition 22. The action of ψk on characters of (virtual) representations is given
by
(
ψkχ

)
(g) = χ

(
gk
)

.

Proposition 23. For a representation ρ ∈ RepFq
(G) ⊆ RepFp

(G), the induced charac-
ter satisfies ψqχρ = χρ, i.e. χρ is a ψq fixed point.

Proof. By definition, ρ is a fixed point of Frobq so χρ = χFrobqρ. For a matrix A over Fp
with eigenvalues λi, the eigenvalues of FrobqA are Frobq (λi) = λqi , which are also the
eigenvalues of Aq, so we get

χρ (g) = χFrobqρ (g) =
∑

λ∈ev(Frobqρ(g))
σ (λ) =

∑
λ∈ev(ρ(gq))

σ (λ) = χρ (gq) = (ψqχρ) (g)

By a Yoneda argument, we can see that ψq acts on BU (representing KU). One can
show that KU (BG)ψ

q

= π0Map (BG,Z× BU)ψ
q

= π0Map
(
BG,Z× BUψq

)
(using the

fact that KU1 (BG) = 0, as follows from the Atiyah-Segal theorem).

Theorem 24. π2n−1
(
BUψq

)
= Z/ (qn − 1) and π2n

(
BUψq

)
= 0.

Proof. Recall from theorem 20 that π2n (BU) = Z (and vanishes in odd degrees), it is
known that ψq acts on it by multiplication by qn. The fixed points can be computed as
the fiber BUψq → BU ψq−id−−−−→ BU. This give a LES in homotopy groups

0→ π2n
(
BUψq

)
→ Z qn−1−−−→ Z→ π2n−1

(
BUψq

)
→ 0

and the result follows.

Our map RepFp
(G) → RC (G) → KU (BG) is easily seen to preserve the exterior pow-

ers Λk, and therefore also preserve the Adams operations. Therefore, by the above,
the restriction to RepFq

(G) lands in KU (BG)ψ
q

. Combining all of this we get a map
RepFq

(G)→ π0Map
(
BG,Z× BUψq

)
.
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4.3 The Map θ and Conclusion of the Proof

We can do a Yoneda-style argument, take G = GLn (Fq) and the regular representa-
tion Fnq . In this case we get a map BGLn (Fq) → Z × BUψq , and since the source is
connected we get θn : BGLn (Fq) → BUψq . These maps are compatible, and we get
θ : BGL∞ (Fq)→ BUψq .

Most of Quillen’s paper is in fact dedicated to the following, which we do not have
enough time to explain.

Theorem 25. The map θ : BGL∞ (Fq)→ BUψq induces an isomorphism on H∗ (−;Z).

Proof (very rough outline). By the universal coefficient theorem it is enough to check
that it is an isomorphism with coefficients Q, Z/p and Z/` for ` 6= p.

By the computation of π∗
(
BUψq

)
we see that it vanishes rationally and mod p, thus

we need to prove the same for BGL∞ (Fq).

It is a well known and easy result that for a finite group G, H̃∗ (BG;Q) = 0. Then we
get H̃∗ (BGL∞ (Fq) ;Q) = H̃∗ (colim BGLn (Fq) ;Q) = colim H̃∗ (BGLn (Fq) ;Q) = 0.

To prove that H̃∗ (BGLn (Fq) ;Z/p) = 0, one first uses a comparison with n × n upper
triangular matrices, inductively on n, from which it follows for ∗ < ν (p− 1) where
q = pν . Then, using a transfer argument, i.e. passing to bigger fields Fqr , one gets the
result for all ∗.

The hardest part is then to show that θ induces an isomorphism on H∗ (−;Z/`) for ` 6= p.
The first part concerns BUψq . Quillen applies the pullback (“Eilenberg-Moore”) spectral
sequence to

BUψq //

��

BU[0,1]

��
BU

(id,ψq)// BU× BU

the cohomology of BU is well known, and the spectral sequence collapses at the E2-page,
which gives some of the information about H∗

(
BUψq ;Z/`

)
. The next ingredient is the

group C = Fq (ζ`)∗, and its Fq representation Fq (ζ`) (and powers of them). This has
Brauer lift that can be described explicitly. It is encoded by BC → BGLn (Fq)→ BUψq

(for suitable n), and the induced map on cohomology H∗
(
BUψq ;Z/`

)
→ H∗ (BC;Z/`)

gives enough information to finish the computation of H∗
(
BUψq ;Z/`

)
and its homology.

Lastly, using the factorization through BGLn (Fq), Quillen imports the data from both
of these to the homology of BGLn (Fq), showing the desired isomorphism.

Recall from 15 that the +-construction is a homology equivalence, therefore we get that
K (Fq) = (Z× BGL∞ (Fq))+ → Z× BUψq incudes an isomorphism on H∗ (−;Z) as well.
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Theorem 26 (Emmanuel Farjoun [Dro71]). Let f : X → Y be a map of simple spaces
(abelian π1, acting trivially on πn). If f induces an isomorphism on H∗ (−;Z), then it
is also a homotopy equivalence.

This is a generalization of the standard Whitehead theorem. It is known that the
underlying space of any object of Ab (S) is simple, so K (Fq) is simple. Furthermore, the
fibration used to compute the homotopy groups of BUψq also shows that it is simple.
Therefore, K (Fq)→ Z× BUψq is an equivalence, and the main result follows

Theorem 27 (Quillen [Qui72]). The algebraic K-theory of Fq is K0 (Fq) = Z, K2i (Fq) =
0 and K2i−1 (Fq) = Z/

(
qi − 1

)
.
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