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We want to do mathematics, where we replace sets by spaces (i.e. homotopy
types). The main slogan of today is that we would like to remove the notion of
equality, i.e. that things are not equal but rather we specify an equivalence, or
a homotopy, between them.

1 ∞-Monoids and ∞-Groups

First recall that a monoid is the same as a group but without an inverse. All
groups are in particular monoids. Other typical examples are N, and End (x) =
hom (x, x) in any category (with composition). So let’s say that we want to
have a monid in the world of homotopy.

A first idea (which will turn out to be badly behaved homotopically) of what
might be a monoid in homotopy is a monoid object G in the category Top of
topological spaces: an element 1 ∈ G and continous · : G → G, such that the
composition is associative and unital. Examples include all usual monoid/groups
(with discerete topology), S1 (with multiplication by embedding it in C), ma-
trix groups such as GLn (R) ,GLn (C) ,U (n) ,SO (n) with matrix multiplication
(with the topology coming from the embedding in Mn (F) ∼= Fn2), End (X) in
topological spaces (endowed with the compact-open topology) etc.

Now, note that for an ordinary monoidG, a setX, and a bijection of setsG ∼= X,
we can transport the monoid structure to X. Specifically, let ψ : X → G be
the bijection, then xy = ψ−1 (ψx · ψy). Similarly, if G is a topological monoid,
and X is another space, and we have a homotopy equivalence G ∼= X, we would
like to be able to transport the structure to X. This would work as above
for a homeomorphism, but we want our notions to be homotopy invariant, but
following the lines above we won’t get the same kind of an object. Let’s see
what we get. Let ϕ : G � X : ψ be the homotopy inverse maps. We can still
define xy = ϕ (ψx · ψy), giving a map · : X×X → X. However, this map is not
associative, namely (xy) z = ϕ (ψϕ (ψx · ψy) · ψz) 6= ϕ (ψx · ψϕ (ψy · ψz)) =
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x (yz), so we have two different points in hom
(
X3, X

)
. As we can easily see, if

ψϕ = idG (as is the case when the maps are inverses but not merely homotopy
inverses) then they are equal. In our case they are not equal, but we do have
a homotopy ψϕ  idG (i.e. a map G × I → G). This gives us a path, or
a homotopy, between the two ways to points in hom

(
X3, X

)
, i.e. (xy) z  

x (yz). This means that the multiplication on X is associative up to a specified
homotopy in this sense. But wait, if we have 4 elements, there are 5 ways to
put brackets on xyzw, and we have already chosen some ways to move between
them:

(xy) (zw)

++
((xy) z)w

88

&&

x (y (zw))

(x (yz))w // x ((yz)w)

88

As you can see, the paths we have chosen between the 5 points of X form a
circle, that is we have a map S1 → hom

(
X4, X

)
. It turns out that using the

homotopies ψϕ idG and ϕψ  idX one can define a disk filling this circle, i.e.
a homotopy witnessing the associativity of multiplication of 4 elements. One
can continue this procedure and see that we have higher coherencies exhibiting
different ways to multiply elements. One can axiomtize all this structure on
X, which we call an ∞-monoid (also called E1-algebra, homotopically coherent
monoid, or simply monoid). It turns out that this is the very good definition to
work with, which indeed encompasses all the homotopically meaningful infor-
mation. In fact, any∞-monoid can be rigidified, i.e. it comes from a topological
monoid.

In fact, if G is a topological group (and not merely a monoid), then we get that
the map X2 → X2 given by (x, y) 7→ (x, xy) is an equivalence, in which case we
say that X is an ∞-group (sometimes called group-like).

An example of an ∞-group, which appears naturally, and not as something
transported from a topological group, is a loop space. Let Y, y0 be a pointed
connected space. We know that π1 (Y, y0) is a group. The way the underlying
set is defined is by considering all paths in Y based at y0, and identifying
homotopic paths. Identifying means making equal, but we wanted to get rid
from equality and use spaces rather than sets. Therefore it makes sense to look
at the space X := ΩY =

{
γ : S1 → Y based at y0

}
of loops (endowed with the

compact-open topology, in which “nearby loops” are “nearby”). By definition, a
path in this space is a homotopy between loops (in the compact-open topology,
continous H : I → ΩY corresponds to continous I × S1 → Y ). Therefore we
conclude that the connected components π0X = π1 (Y, y0) form a group. In fact,
it is easy to see that πnX = πn+1Y . Furthermore, we can define a multiplicative
structure on X by path concatenation. Clearly this is not associative on the
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nose, but we can choose homotopies between paths (γ ∗ δ) ∗ ε to γ ∗ (δ ∗ ε).
One can then see that we can fill the disk for 4 elements and so on. Thus this
arranges to an ∞-group, and in fact

Theorem 1. Let X be an ∞-group, then X ∼= ΩY for some (unique up to
homotopy) pointed connected space Y .

Corollary 2. Let G be (discrete) group, then there exists a pointed connected
space BG such that G ∼= ΩBG. In particular π1BG = G and π≥2BG = 0.

2 ∞-Categories

At this point we see that it is sensible to consider operations associative up
to coherent homotopies. In particular, we would like to have a notion similar
to categories in which structures like spaces (up to homotopy), ∞-groups, etc.
live, and where we can manipulate them systematically. This is the notion of
an ∞-category.

We first think back on categories. A category with one element x is the
same data as a monoid, given by End (x). To get general categories then
we need to have a collection of objects and morphisms between them, that
can be composed when the target and source match. This can be though
of “multi-object” monoids. Similarly, once we have an established notion of
an ∞-monoid, by some modifications we get the notion of an ∞-category.
In particular, an ∞-category has a space of objects, and between two ob-
jects we have a hom-space, with composition which associative up to coher-
ent homotopies similarly to ∞-monoids, e.g. we have two ways to compose
hom (x, y)×hom (y, z)×hom (z, w)→ hom (x,w), and we have specified homo-
topy between them.

Given an ∞-category C, one can get an ordinary category called the homo-
topy category, hC, whose objects are the (connected components) of C, and
homhC (x, y) = π0 hom (x, y).

This turns out to be a surprisingly good idea. Examples include all usual cate-
gories such as Set, Mon, Grp, Ab, etc. Furhtermore, spaces arrange into an ∞-
category denoted S (where hom (X,Y ) has the homotopy type of the compact-
open topology). Moreover,∞-monoids and∞-groups arrange into∞-categories
Mon∞ and Grp∞.

Another example comes from spaces. Recall that for a pointed connected space
Y, y0 we defined X = ΩY which is an ∞-monoid, a “one-object” ∞-category.
Similarly, we can take a general (unpointed) space Y , and define the∞-category
whose space of objects is just Y , and hom (y, y′) is the space of paths y  y′

(the case y = y′ recovers ΩY ). Just like ΩY was an∞-group, all the morphisms
here are invertible (for each path take the reverse path), thus this ∞-category
is in fact an ∞-groupoid. Clearly one can also recover the space Y from the
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∞-groupoid, as the space of objects. So similarly to theorem which says that
∞-groups are loop spaces, we have the following

Theorem 3 (The Homotopy Hypothesis). An ∞-groupoid is the same thing as
a space, i.e. there is an equivalence of ∞-categories S ∼= Grpd∞.

The theory of ∞-categories works very well, and has many similarities to cat-
egory theory, with appropriate changes. For example, there are ∞-functors,
adjunctions, ∞-co/limits (also called homotopy or derived co/limits), natural
transformations etc. In this world, sets are replaced by spaces. As an example,
the Yoneda lemma reads

Lemma 4 (Yoneda). Let C be an∞-category, then the functor C→ Fun (Cop, S)
(which sends X ∈ C to hX (Y ) = hom (X,Y )) is fully faithful.

2.1 ∞-Co/Limits

As we said, there is a notion of ∞-co/limits, and they have a similar universal
property to that of usual co/limits, but in an ∞-category. To give an example,
and to show that it plays nicely with homotopy theory, we consider the following.
Let f : X → Y be a map of spaces. The cofiber is the pushout/colimit diagram

X
f //

��

Y

��
pt // cofib (f)

i.e. cofib (f) = Y/f (X). Now, take f : Sn → pt, in this case we clearly get
cofib (f) = pt. However, if we replace f with the equivalent map f : Sn →
Dn+1 which includes the boundary, we get cofib (f) = Sn+1 (as we collapse
the boundary of Dn+1 to a point). We see that by replacing the diagram by
a homotopy equivalent one, we get a colimit which is not homotopy equivalent
(since Sn+1 is not contractible).

The∞-cofiber, or homotopy cofiber, which we denote for short by Cf is defined
as the ∞-colimit. That is, it has the universal property that giving a map
C (f) → Z is the same as giving a map Y → Z, together with a homotopy
from the image of f (X) to a point in Z. You may have seen a construction that
encodes just this, i.e. computes the homotopy cofiber, namely the mapping cone
X × I

∐
Y/ ∼ where we crush (x, 0) to a single point, and glue (x, 1) ∼ f (x).

One can intuitively see that the “cone part” exactly gives the desire homotopy
of the image of f (X) to a point. Here it is easy to see that C (Sn → pt) and
C
(
Sn → Dn+1) are both homotopy equivalent to Sn+1.

To connect this to other notions, lets work in the pointed category, in which we
should also identify {x0}× I to a point. Take the unique map f : X → pt, then
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we get that Cf = ΣX is the reduced suspension (taking the unpointed version
would give the non-reduced suspension). Unpacking the definition, this we have
a homotopy pushout

X //

��

pt

��
pt // ΣX

thus the suspension has a very natural description. We also have a dual story
of the homotopy fiber of a map. Again, working in pointed spaces and taking
the unique map pt→ X, one sees that we get a homotopy pullback diagram

ΩX //

��

pt

��
pt // X

Hopefully these examples indicate how useful are ∞-co/limits, and give you an
idea on how to think about them.

3 Higher Algebra and Spectra

We have seen a (hint of the) definition of ∞-monoids and ∞-groups. This is
a starting point for higher algebra. Just as ordinary algebra studies things
like abelian groups, rings, etc., higher algebra studies the homotopy coherent
versions of such structures. We shall now discuss (one of the versions of) ∞-
abelian groups, i.e. commutative ∞-groups.

We have seen before that an ∞-group X0 was the same as a loop space of a
pointed connected space, X0 ∼= ΩX1. This was reasonable, as on ΩX1 we have
the concatenation of paths, which clasically gives the group structure on π1X1.
Now, we recall that that π≥2 is always abelian. Taking this hint, we consider
double loop spaces. That is, assume that X1 itself is a loop space of a pointed
1-connected space X1 ∼= ΩX2. Then X0 ∼= Ω2X2, thus πnX0 = πn+2X2 so all
of its homotopy groups are abelian. We recall that the way we prove that π≥2
is abelian is by Eckmann-Hilton, one shows that the two ways to concatenate
(put the squares side-by-side or on top of each other) distribute. We can define
all the concatenations and the homotopies between them on X0 ∼= Ω2X2 itself.
This indeed gives X0 some coherent commutativity structure, i.e. different
homotopies between xy and yx, and between three elements and so on. However,
now one can ask, maybe X2 is deloopable once more, i.e. X2 ∼= ΩX3. Then we
get even more ways to concatenate, which gives even more homotopy coherence.
If we can continue in this fashion infinitely many times, i.e. deloop X0 more
and more, then we obtain as much commutativity as possible on X0. So a
commutative ∞-group X is the same as a series of pointed n-connected spaces
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X0, X1, X2, . . . together with equivalence Xn
∼= ΩXn+1. We think of X0 as

the underlying pointed space, and the Xn’s encode the coherent multiplication.
These assemble into a category, called connective spectra Sp≥0. We have a
forgetful (∞-)functor Ω∞ : Sp≥0 → S∗ taking the underlying space X 7→ X0.
The homotopy groups of X are defined to be the homotopy groups of X0, i.e.
πmX = πmX0 = πmΩnXn = πm+nXn (which are all abelian, since we can take
n ≥ 2).

A simple example is X = 0 where all the spaces are just points.

We have seen that a discrete group G is always deloopable, i.e. G ∼= ΩBG.
Now if BG is deloopable itself, then G = π2B2G is abelian, and this is an if
and only if, for an abelian group A, BA is deloopable to B2A. One can keep

on going and deloop it to BnA. We note that πmBnA =
{
A m = n

0
and

πmHA = πmA =
{
A m = 0
0

. These spaces are known to represent cohomol-

ogy, i.e. Hn (X;A) = [X,BnA] = π0 hom (X,BnA). This shouldn’t be too
surprising, as a strictly commutative muliplication should of course commute in
the homotopical sense. All of these then arrange into a connective spectrum,
denoted HA. We see that there is an (∞-)functor H : Ab→ Sp≥0, furthemore

Theorem 5. The ∞-functor H : Ab→ Sp≥0 is fully faithful.

This all arranges into a commutative square of ∞-categories:

Ab �
� H //

��

Sp≥0

Ω∞

��
Set∗ �

� // S∗

In ordinary algebra, there is a left adjoint to Ab → Set∗, given by the free
abelian group (identifying the base point with 0) X 7→ Z [X]. Similarly, there is
a left adjoint (in the∞-categorical sense) to Ω∞, usually denoted by Σ∞X. This
doesn’t have a simple description as an infinite loop space, but the machinery
of ∞-categories gives it for free.

There is another functor Σ : Sp≥0 → Sp≥0 which takes X = (X0, X1, X2, . . . )
to ΣX = (X1, X2, X3, . . . ), and one can check that it is the homotopy pushout
with 0. Since X0 ∼= ΩX1, it is expected that this has an inverse from the left,
and indeed, the adjoint Ω : Sp≥0 → Sp≥0 is the left inverse. Furthermore, it is
the homotopy pullback with 0. We also see that πnΣX = πnX1 = πn+1X0 =
πn+1X, so it has homotopy groups only from 1 and above. The full subcategory
of these is denoted Sp≥1, and upon restriction of the adjunction we get an
equivalence Σ : Sp≥0 � Sp≥1 : Ω. This should remind you positively-graded
chain complexes, where we can shift in both directions, but only one of them is
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invertible. We can also formally invert the shift giving rise to Z-graded chain
complexes, and here similarly giving rise to the category of all spectra Sp, where
Ω and Σ are inverse to each other and shift the homotopy groups. In particular,
there are spectra with negative homotopy groups, e.g. π−1ΩHA = π0HA = A.

The world of spectra behaves like abelian groups in more ways. For example,
there is a tensor product X ⊗ Y , making it symmetric monoidal, with a unit
denote by S. Furthermore, just like the hom-set between abelian groups can be
promoted to an abelian group, the hom-space between spectra can be upgraded
to a spectrum (the adjoint to the tensor product), the internal hom. One can
then check by playing with adjunction that π−nhom (X,Y ) = π0hom (X,ΣnY ).
Now, let X a space, we get:

π−nhom (Σ∞X,HA) = π0hom (Σ∞X,ΣnHA)
= π0hom (X,Ω∞ΣnHA)
= [X,Ω∞ΣnHA]
= [X,BnA]
= Hn (X;A)

thus hom (Σ∞X,HA) encodes the ordinary cohomology of X. Replacing HA by
another spectrum E we get other cohomology theories.

One may wonder than what are HA⊗HB and hom (HA,HB). On the π0 these
recover A ⊗ B and hom (A,B), however these objects are far richer, and are
very much related to our next talk on the Steenrod algebra.

We can continue and develop the world of higher algebra. As a hint, if R is an
abelian group, a ring structure on it includes in particular a map R ⊗ R → R.
Following this idea in the world of spectra gives rise to ring spectra.
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