
Historical Motivation

(Not meant to be written down only to be said out loud to get everyone on board - most of this
section will probably be skipped)
Algebraic Topology, in broad storkes, is the study of algebraic invariants of topological spaces
(for the sake of concreteness here’s a list of examples of spaces we’d like to fit in our theory:
Smooth/Topological manifolds, Simplicial Complexes, CW Complexes, Algebraic Varieties etc...).
In the first half of the 20th-century many different constructions were discovered for attaching
invariants to each of the above examples (De-Rham cohomology, Simplicial Homology, Cellular
Homology, Singular Homology etc...).
Gradually it was realized that many of these invariants (although not all of them defined on the
same class of topological spaces) were giving the same answers. Proving comparisons between the
different constructions on overlapping domains of definition quickly became painfully technical. To
solve this problem Eilenberg and Steenrod developed an axiomatic approach to the study of these
invariants.

Official Start

Definition 1. Let Ho = Ho(Top) be the homotopy category of topological spaces, i.e. the localiza-
tion of the category of topological spaces w.r.t. weak homotopy equivalences. This category is also
equivalent Ho(CW ) whose objects are CW-complexes and morphisms homotopy classes of maps
(this is how we will think about it for the rest of the talk).

All of the examples mentioned before fit into this category obviously. Also all the invariants
mentioned, when defined, are functorial and homotopy invariant. Here are the eilenberg-steenrod
axioms for cohomology theories:

Definition 2. A (reduced) classical* cohomology theory H∗ is a functor

H∗ : Hoop∗ → grAb

Equipped with natural isomorphisms:

H∗+1(ΣX) ∼= H∗(X)

For every X ∈ Ho∗ (where Σ stands for reduced suspension). Satisfying the following conditions:

1. ( Additive ) : The canonical map H∗(
∨
αXα)→

∏
αH

∗(Xα) is an isomorphism.

2. ( Exactness ) : For every inclusion A ⊂ X of a subcomplex the associated sequence

H∗(X/A)→ H∗(X)→ H∗(A)

is exact in the middle.

3. ( Dimension ) : H 6=0(S0) = 0

Cohomology theories form a category where morphisms are natural transformation respecting the
suspension isomorphisms.

Proposition 1. A morphism of cohomology theories inducing isomorphism on H0(S0) is an iso-
morphism.
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Proof. By compatibility with the natural isomorphisms it induces iso on all spheres. Then by (1) it
induces iso on all wedges of spheres. Then since every space has skeletal filtration whose quotients
are wedges of spheres we can induct on the filtration using (2) for the induction step to win.

In fact a stronger statement is true in this case. The cohomology theory is in fact uniquely
determined by its coefficient group. This can be shown by inductively constructing the natural
transformation then using the above proposition (note that if the dimension axiom is dropped this
becomes impossible!).
So far we have shown uniqueness but not existence. There’s a way to prove existence by simply
using cellular homology (and cellular approximation for maps). We will go in a different route. Let
Hoc∗ denote the homotopy category of pointed, connected CW-complexs.

Theorem 1 (Brown’s representability). A functor F : Hoc∗ → Set∗ is representable precisely when
it satisfies the following conditions:

1. Respects coproducts - for every collection {Xα} the natural map F (
∨
αXα) →

∏
α F (Xα) is

a bijection.

2. Mayer Vietoris - Whenever X = A1 ∪A2 (where A1, A2 are subcomplexes) the canonical map

F (X)→ F (A1)×F (A1∩A2) F (A2)

is surjective (we will not prove this theorem).

Example 1. Let Hn be n-graded piece of some cohomology theory. Condition (1) of Brown’s
theorem is ES1 and so immediately satisfied. The second conditions follows from applying ES2
and some diagram chasing on the morphism of exact sequences

Hn(X/A1 ∩ A2) Hn(X) Hn(A1 ∩ A2) Hn+1(X/A1 ∩ A2)

Hn(A1
∨
A2

A1∩A2
) Hn(A1)⊕Hn(A2) Hn(A1 ∩ A2)

⊕2 Hn+1(A1
∨
A2

A1∩A2
)

The leftmost and rightmost arrows are isomorphisms abnd the second from the right is the diagonal
map x 7→ (x, x).

Thereofore for any abelian group A there’s a unique pointed space which we will denote by K(A, n)
satisfying that [−, K(A, n)] = Hn(−, A). This space is called an eilenberg maclane space.

Remark 1. Notice that by eilenberg steenrod axioms we must have [Sn, K(A, n)] = Hn(Sn, A) ∼=
H0(S0, A) = A and the rest of the homotopy groups are trivial by the dimension axiom. It follows
immediately from obstruction theory that K(A, n) can also be characterized as the unique pointed
space with these homotopy groups.

Example 2. The circle S1 = R/Z has fundamental group Z and no higher homotopy groups and
thus is a K(Z, 1). Real Projective space RP n has Sn as its universal 2-cover. Combining with
S∞ ∼= ∗ we conclude that RP∞ is a K(Z/2, 1).

The above examples motivates the following construction for a group G.

Example 3. Take contractible space EG with a free action of G then take the quotient BG =
EG/G. By the long exact sequence of homotopy groups for G → EG → BG we see that if G is
abelian we get BG = K(G, 1).
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Notice that unlike before this construction makes sense for arbitrary topological and/or non-abelian
groups as well! (while K(G, 1) makes no sense at all in this case). Notice also that mapping this
fibration with the path space fibration for BG gives an equivalence ΩBG = G.

Remark 2. Recall that if G is a topological group, a principal G-bundle over X is a space P with
an free action of G s.t. P/G = X. Now note that the universal fibration EG→ BG has 2-notable
properties: EG is a free G-space and EG/G = BG. It turns out that both of these properties are
preserved by pullbacks! (follows from the fact that colimits are universal and stabilizers can only
decrease upon pullback). Thus any map X → BG can be used to pullback EG and obtain a principal
G-bundle P . Therefore the space BG is the classifying space for principal G-bundles.

Example 4. Complex projective space CP n can be defined as the quotient of CP n+1 by the scaling
action of C× Restricting to the corresponding sphere we obtain a fiber sequence U(1) → S2n+1 →
CP n. In the limit this gives us CP∞ = BU(1) (we can thus conclude that H∗(BU(1), Z) =
Z[[x]](because there are only even cells)) cool!.

Notice that BU(1) = BS1 = B(BZ) = B2Z (in particular π2(BU(1)) = Z and is the only non-
trivial homotopy group!) but what does that mean?

Remark 3. Turns out that if A is a topological abelian group then BA can also be endowed with an
abelian group structure (unique upto homotopy) as well. We can thus define for a discrete abelian
group a topological abelian group BnA recursively. By the long exact sequence in homotopy groups
for BnA→ E(Bn+1A)→ Bn+1A we conclude that BnA = K(A, n).

Example 5. Let U(n) be the unitary group has a classifying space BU(n). Recall that it classifies
principal U(n) bundle but there’s a correspondence between vector bundles and principal bundles
which in one way takes the associated bundle and in the other the frame bundle (give details if
there’s time). So we can think of BU(n) also as the classifying space of complex vector bundles of
rank n. Also we define BU := colimnBU(n) which classifies virtual vector bundles (in a sense that
will maybe become clear later in the day... *Thom spectra*). The cohomologies of these spaces be
computed using the the serre spectral sequence for S2n+1 → BU(n)→ BU(n+ 1))

Fix an abelian group A and recall that ΩBn+1A = BnA. We thus have an infinite sequence of
spaces each delooping the next. We are motivated to give the following definition:

Definition 3. An Ω-spectrum is a sequence of spaces {Zn} together with equivalences ΩZn+1
∼= Zn

Proposition 2. There is a 1-1 correspondence between spectra and generalized cohomology theories.

Proof. Given an Ω Spectrum {Zn} we can set Hn(−) := [−, Zn] and define the suspension isomor-
phisms by Hn+1(ΣX) = [ΣX,Zn+1] ∼= [X,ΩZn+1] ∼= [X,Zn] = Hn(X). In the other direction recall
that our proof that for any cohomology theory Hn are representable using Brown’s representability
didn’t use anywhere the dimension axiom. So to any generalized cohomology theory H∗ we can
assign a sequence of spaces {Zn} with [−, Zn] = Hn. The suspension isomorphisms give us the
equivalences ΩZn+1

∼= Zn (like before).

Example 6 ( K-theory). - Bott periodicity gives an equivalence Ω2BU ×Z = BU ×Z so this gives
us a spectrum in the obvious way (which is moreover 2-periodic!). This spectrum is denoted KU
or K and called complex K-theory. It can be computed in terms of vector bundle data on a space.

Remark 4. Spectra form a category with maps defined in the obvious way and we can localize this
category similarly w.r.t. the homotopy equivalences similarly to what we did with spaces. The result
is not equivalent to the category of cohomology theories! But it is very close to it! (cohomology
theories are a sort of quotient by the square zero ideal consisting of ”phantom maps”).
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