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A good reference for this talk is [Lur10, Lectures 15, 16]. This talk is very similar
to the talk given by Dylan Wilson at [Wil18], which has typed notes here https:
//drive.google.com/file/d/15ZbcP59IgoVd3vroq1Mp2ZNgvw9wm30v/view and
a video here https://math.colorado.edu/chtjourney/video.php?fn=Dylan_
BP_5_16-360p.

In the last talk, Lior told us about the relationship between complex orientations
and formal group laws. Namely, he showed us that from a complex orientation
on a ring spectrum (multiplicative cohomology theory) E, we can get a formal
group law over E∗ denoted FE (x, y) ∈ E∗ [[x, y]]. We saw that the spectrumMU
carries the universal complex orientation, i.e. that giving a complex orientation
is equivalent to giving a ring map MU → E. Furthermore, MU∗ = L is the
Lazard ring, from Stephan’s talk, carrying the universal formal group law, so
we get a map L = MU∗ → E∗, classifying the formal group law over E∗.

One may wonder if can we reverse this construction. That is, can we start with
a (graded) ring R and formal group law over it F (x, y) ∈ R [[x, y]], and build
a complex oriented spectrum ER,F from it (with coefficients (ER,F )∗ = R and
formal group law FER,F

= F )? Landweber exact functor theorem describes a
situation in which this is possible.

Here’s a suggestion for constructing such a spectrum. We will describe it by
its homology theory (it is possible to do it cohomologically). As Shaul told us,
Brown representability theorem tells us that this gives a spectrum. So let’s say
we have a formal group law F overR. This is equivalently a mapMU∗ = L→ R.
We define a functor ER,F : S∗ → GrAb by:

(ER,F )∗ (X) = MU∗ (X)⊗L R

We also have natural isomorphismsMUn (X) ∼−→MUn+1 (ΣX), thus by tensor-
ing with R we get (ER,F )n (X) ∼−→ (ER,F )n+1 (ΣX). This is a functor equipped
with the suspension isomorphisms, but it is not clear that it is a homology
theory. Recall Eilenberg-Steenrod axioms for homology from Shaul’s talk:
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1. Additivity - The canonical map
⊕
E∗ (Xi) → E∗ (

∨
i Xi) is an isomor-

phism.

2. Exactness - For any inclusion of a subcomplex A ⊂ X, the associated
long sequence · · · → En+1 (X/A) → En (A) → En (X) → En (X/A) →
En−1 (A)→ · · · is exact.

Tensoring with R preserves isomorphisms, thus ER,F is additive. The only thing
that might go wrong is exactness, that is, tensoring the LES with R might not
give a long exact sequence.

One way to get exactness is that R is flat over L (which precisely means that
tensoring with R over L, sends an exact sequences of L modules to an exact
sequence). However, recall that Lazard’s theorem says that L ∼= Z [x1, x2, . . . ]
which is a very big ring. Therefore, it is hard to be flat over it. It turns out that
this condition is indeed stronger than necessary, and can be relaxed. Moreover,
the relaxed condition is very easy to check, which is also a big plus.

First we consider a simplified situation of what really happens. Imagine that
we had a ring map L′ → L, s.t. all of the modules in the exactness axiom were
base-changed from L′, thus our modules are not arbitrary L-modules. Then, we
can consider R over L′ (instead of L), and check the flatness only over L′. If L′
was a “smaller” ring than L, it might be considerably easier to be flat over it.
Our situation is not too far from this.

I do not wish to get into it, but I will say quickly for the algebro-geometrically
inclined people. Instead of a map SpecL → SpecL′ what we a have is map
SpecL → Mfg, where the latter is the moduli stack of formal groups, thus we
just need to check flatness over it.

Let E be a ring spectrum, and X a space. First we consider the cohomology
E∗ (X) = π−∗ hom (Σ∞X,E). This is a priori only an E∗-module. However,
there are cohomology operations, which are given by maps from E to itself,
that is E∗E = π−∗ hom (E,E). This gives an action of E∗E on E∗ (X) over
E∗ by post-composition, E∗ (X) ⊗E∗ E∗E → E∗ (X). This makes the E∗-
module E∗ (X) a module over the algebra E∗E. Now, consider the homology
E∗ (X) = π∗ (Σ∞X ⊗ E), which is of course a module over E∗. Dually, (under
some conditions) it has coaction by E∗E = π∗ (E ⊗ E) over E∗, ∆ : E∗ (X) →
E∗ (X) ⊗E∗ E∗E. Here the map is obtained by tensoring the unit map S → E
with E. This makes the E∗-module E∗ (X) a comodule over the coalgebra E∗E.

In our situation, this means that MU∗ (X) is not merely an MU∗ = L-module,
but also an MU∗MU = Γ-comodule. Thus we only need to know that −⊗LR :
Comod(L,Γ)

forgetful−−−−−→ ModL → ModR is exact, that is, sends exact sequences of
modules coming from such comodules to exact sequences. Landweber gave a
very checkable condition, equivalent to the exactness of that functor, in terms
of the formal group law F/R classified by L→ R.
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Recall that for a formal group law F over R, we defined the m-series, [m]F (x) =
X +F · · ·+F X︸ ︷︷ ︸

m times

∈ R [[x]], which is the multiplication by m.

Definition 1. Let p be a prime, we define vn ∈ R as the coefficient of xpn in the
p-series [p]F (x) (this depends on R,F, p which are omitted from the notation).

We note that v0 = p is the coefficient of x = xp0 . As a reminder, although not
very relevant now, the formal group law (over a field of characteristic p) was of
height n if vi = 0 for i < n and vn 6= 0. We should note that this vn is not an
invariant of F (and in fact not quite the right definition), it might change under
an isomorphism, but it is invariant modulo (p = v0, v1, . . . , vn−1).

Now, for the formal group law F over R, for every prime p we have the sequence
p = v0, v1, v2 . . . , and we can finally define Landweber flatness:

Definition 2. The formal group law F over R is called Landweber flat, if and
only if, for every prime p and n, the mapR/ (v0, v1, . . . , vn−1) ×vn−−−→ R/ (v0, v1, . . . , vn−1)
is injective, i.e. not a zero-divisor. In other words, the sequence p = v0, v1, v2 . . .
is regular.

We note that 0 is not a zero-divisor in the 0 ring. Moreover, if vn is invert-
ible in R/ (v0, v1, . . . , vn−1) it is certainly not a zero-divisor, and we get that
R/ (v0, v1, . . . , vn−1, vn) = 0, so the condition holds for vk for k ≥ n+ 1.

Armed with this definition we can finally state the main theorem:

Theorem 3 (Landweber Exact Functor Theorem (LEFT)). If F over R is
Landweber flat, then (ER,F )∗ (X) = MU∗ (X) ⊗L R is a homology theory. (In
fact, Landweber flatness is equivalent to the functor − ⊗L R from comodules
being exact.)

We now give examples of a few Landweber flat and non-flat formal group laws.

First, a class of examples, let R be some ring, and consider the additive formal
group law over it, that is Fa (x, y) = x+ y. The p-series is then [p]Fa

(x) = px,
thus v0 = p and vn = 0 for n > 0. (We can immediately conclude that it is
Landweber flat only over Q-algebras, but let’s see a few examples.)

Example 4. For R = Q, Fa is Landweber flat. Indeed for every p, v0 = p is
invertible in Q and in particular not a zero-divisor, and Q/p = 0, so as we said
the condition holds for vn for n ≥ 1. This example gives MU∗ (X) ⊗L Q =
H∗ (X;Q) ordinary homology over Q!

Example 5. For R = Fq, Fa is not Landweber flat. Here primes p 6= q do
work, but for the prime q, v0 = q = 0 in Fq, which is a zero-divisor.

Example 6. For R = Z, Fa is not Landweber flat. For every prime p, v0 = p
is not zero-divisor in Z, but v1 = 0 is a zero-divisor in Fp.
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Example 7. We now reconstruct K-theory! Let R = Z
[
β±1], and consider

the multiplicative formal group law over it (coming from K-theory), Fm (x, y) =
x + y + βxy = β−1 ((1 + βx) (1 + βy)− 1). Then the p-series is [p]Fm

(x) =
β−1 ((1 + βx)p − 1) = px+ · · ·︸︷︷︸

don’t care

+βp−1xp, thus v0 = p, v1 = βp−1 and higher

vn’s vanish. Indeed, v0 = p is not a zero-divisor in R = Z
[
β±1]. Furthermore,

v1 = βp−1 is invertible, thus not zero-divisor, in R/p = Fp

[
β±1]. And, as we

said, since it is invertible, the condition holds for vn for n ≥ 2. It turns out that
indeed this recovers K-theory as K∗ (X) = MU∗ (X)⊗L Z

[
β±1].

Proof sketch of LEFT. Recall that we wanted to show that if F over R is
Landweber flat, then − ⊗L R : Comod(L,Γ)

forgetful−−−−−→ ModL → ModR is ex-
act.

1. Flatness over L is equivalent to TorL (R,M) = 0 for every M ∈ ModL.

2. We can filter M , s.t. the associated graded is gr∗M =
⊕
L/pi, for prime

ideals . So it is enough to check TorL (R,L/p) = 0 for every prime ideal.

3. If we consider only modules which come from Γ-comodules, we can arrange
the filtration s.t. each L/p is invariant under the coaction, that is ∆ (p) ⊆
p⊗L Γ.

4. Landweber proved the Invariant Prime Ideal theorem, which says that
(p = v0, v1, . . . , vn) are the only invariant prime ideals.

5. Applying this, we can show that the vanishing of TorL (R,L/ (v0, v1, . . . , vn))
for all n is equivalent to the series being regular in R.
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