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Implicitly, whenever I say category I mean ∞-category, etc.

1 Background on Redshift

1.1 Algebraic K-Theory

Let me begin by briefly reminding what is algebraic K-theory, in a way amenable to generalization
later. Given a stable category C ∈ Catst, the space of objects is a commutative monoid with
respect to direct sums C' ∈ CMon(S). Now, a commutative monoid can be group-completed by
applying the left adjoint to the inclusion

(−)gpc : CMon(S) � CMongl(S) = Sp≥0,

just like the passage from N 7→ Z. This gives us the direct sum K-theory

(C')gpc ∈ Sp≥0.

However, we have only used the fact that C has direct sum, i.e., semiadditive, and not stability.
Namely, we neglected (co)fiber sequences. Algebraic K-theory is obtained by doing the above
while also forcing Y = X + Z for any (co)fiber sequence X → Y → Z, using, for example, the
S•-construction. This assembles into a functor

K: Catst → Sp≥0.

Definition 1. For a ring spectrum R ∈ Alg(Sp) (e.g., any ordinary ring) we let

K(R) := K(Moddbl
R (Sp)).

Example 2. K(C)∧p = ku∧p .

1.2 Chromatic Homotopy

A very useful paradigm in ordinary algebra is studying questions one prime at a time and then
gluing the results. For simplicity, let us work p-locally (i.e., keep rational and characteristic p in-
formation, and ignore all characteristic q 6= p information), then this decomposition is controlled
by the fairly simple topological space

Spec(Z(p)) = {(0)→ (p)}.
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The chromatic picture shows that over the sphere spectrum, there are new characteristics

Spec(S(p)) = {(0)→ (p, 1)→ · · · → (p, n)→ · · · → (p,∞)}.

More specifically, there are localizations LT(n) : Sp → SpT(n) for every n (the case n = 0 re-
produces rationalization), where the number n is called the height. Generally speaking, the
information gets more complicated as the height increases.

Example 3. Topological K-theory is of height 1, KU∧p ∈ SpT(1).

1.3 Redshift

As we mentioned above, K(C)∧p = ku∧p , which shows that algebraic K-theory takes something
of height 0 (as C is rational) to something of height 1. This, along with more evidence when
the input has height 1, has led Ausoni–Rognes to the far-reaching redshift conjecture. Their
conjecture takes a specific strong form, out of which emerged a wider philosophy which can be
loosely described as follows:

Conjecture 4. Algebraic K-theory increases chromatic height by 1.

Let me give one manifestation of this philosophy, which is not the original one, and was recently
proven by a combination of breakthroughs. By a theorem of Hahn, if R ∈ CAlg(Sp) has LT(k)R =
0, then LT(k+1)R = 0 as well, thus R is supported on 0, . . . , n for some n.

Theorem 5. Let R ∈ CAlg(Sp) be supported on 0, . . . , n, then K(R) is supported on 0, . . . , n+1.

Clausen–Mathew–Naumann–Noel and Land–Mathew–Meier–Tamme showed that the support is
at most n+ 1. The other inequality was proven for examples at every height n by Hahn–Wilson
and Yuan, and, building on that, for any R by Burklund–Schlank–Yuan.

2 Background on Higher Semiadditivity

2.1 m-Semiadditivity

Let us begin with ordinary algebra. The (1-)category Vectk is

• pointed, i.e., initial object = terminal object,

• semiadditive, i.e., finite coproducts = finite products.

Because it is semiadditive, we can sum, which allows us to give the following definition.

Definition 6. Let G be a finite group acting on V ∈ Vectk, we let

Nm: VG︸︷︷︸
=colimBG V

→ V G︸︷︷︸
=limBG V

, Nm([x]) :=
∑
g∈G

gx.

Observe that if |G| is invertible in k, then 1
|G| is an inverse to Nm, thus
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Proposition 7. If char(k) = 0, then colimits = limits over finite groupoids. That is, let A be a
finite groupoid and X : A→ Vectk be a diagram, then

Nm: colim
A

X
∼−→ lim

A
X.

On the other hand, for example for k = Fp and G = Cp acting trivially, we have Nm = 0, so
this phenomenon does not happen at characteristic p for p-groups (but it does for prime-to-p
groups). Surprisingly, this result, and a vast generalization of it, does hold in the intermediate
characteristics SpT(n) for n ≥ 1, eventhough they are p-complete, which we now move on to.

Definition 8. We say that a space A is an m-finite p-space if

1. π0A is finite,

2. πi(A, a) is a finite p-group for every a ∈ A,

3. A is m-truncated, i.e., πi(A, a) = 0 for i > m.

From now on I am going to implicitly assume that all m-finite spaces are p-spaces.

Example 9. We have

• (−1)-finite = ∅, ∗.

• 0-finite = finite set.

• 1-finite = finite coproduct of BG’s where G is finite.

Definition 10. C is (p-typically) m-semiadditive if for any m-finite space A and X : A→ C the
norm map is an isomorphism

Nm: colim
A

X
∼−→ lim

A
X.

In these terms, what we have seen before is that VectFp
is 0-semiadditive but not 1-semiadditive,

VectQ is 1-semiadditive (and as a 1-category, automatically ∞-semiadditive). Following a line of
results by Greenlees–Hovey–Sadofsky, Kuhn and Hopkins–Lurie, we have:

Theorem 11 (Carmeli–Schlank–Yanovski). SpT(n) is ∞-semiadditive.

2.2 Higher Commutative Monoids

Higher semiadditivity gives a lot of extra structure and properties on the category, and I would
like to emphasize one aspect, due to Harpaz. Let C be a (0-)semiadditive category, then, as
mentioned before, every object X ∈ C is canonically a commutative monoid. Namely, there
are summation maps

∑
A : XA → X for any finite set A, which are coherently commutative,

associative and unital. Harpaz defined the notion of an m-commutative monoid, where one
has similar “integration” maps

∫
A

: XA → X for an m-finite p-space A, which are coherently
commutative, associative and unital.

Example 12. Let C be m-semiadditive, then every X ∈ C is canonically an m-commutative
monoid with ∫

A

: XA = lim
A
X

Nm−1

−−−−→ colim
A

X
∇−→ X.
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Theorem 13 (Harpaz). CMonm(S) is the universal presentable m-semiadditive category.

Definition 14. [m]צ := CMonm(Sp) is the universal presentable m-semiadditive stable category.

Example 15. There is a canonical (smashing localization) functor Lצ[m]

T(n) : [m]צ → SpT(n).

I would like to give one more example of an m-semiadditive category, which will play a significant
role later.

Example 16. The category Catm-fin of categories that have m-finite (p-space) colimits and
functors preserving them is m-semiadditive. As such, every C ∈ Catm-fin is itself canonically an
m-commutative monoid, with integration maps given by

colim
A

: CA → C.

2.3 Semiadditive Height

Carmeli–Schlank–Yanovski observed that height can be measured using the commutative monoid
structure on X ∈ C. In the interest of time, I won’t give the definition, but I will mention that,
just like for spectra, an object can be supported at different heights. Using the integration maps
for A = BnCp, they define when the semiadditive height ht(X) is ≤ n or > n.

Example 17. Every object X ∈ SpT(n) has semiadditive height n.

Proposition 18. If F : C→ D is m-semiadditive (preserves (co)limits over m-finite p-spaces),
then ht(X) ≤ n implies ht(F (X)) ≤ n.

If C is m-semiadditive, then we can measure the height of every object X ∈ C. On the other
hand, since C ∈ Catm-fin is itself an object of an m-semiadditive category, we can measure its
height.

Theorem 19 (Semiadditive Redshift, Carmeli–Schlank–Yanovski). Let C be m-semiadditive,
then TFAE

• ht(X) ≤ n for every X ∈ C,

• ht(C) ≤ n+ 1, as an object of Catm-fin.

3 Higher Semiadditive K-Theory

3.1 Definition

Recall that to define algebraic K-theory, we observed that since the category is semiadditive the
space of objects is a commutative monoid, which we then group-completed to get (C')gpc ∈ Sp≥0.
To actually get algebraic K-theory we also need to split (co)fiber sequences. Now, if C ∈ Catst

m-fin,
then as above the space of objects is an m-commutative monoid. We can thus take the group-
completion while preserving this structure, namely apply the canonical functor

(−)gpc : CMonm(S)→ CMonm(Sp) = ,[m]צ
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giving an m-semiadditive version of direct sum K-theory. Again, we also want to split (co)fiber
sequences, which we implement using the S•-construction, resulting in a functor

K[m] : Catst
m-fin → .[m]צ

The case m = 0 reproduces (p-localized) ordinary algebraic K-theory. From now on, I always
assume m ≥ 1.

Definition 20. For a ring spectrum R ∈ Alg(SpT(n)), we show that Moddbl
R (SpT(n)) is ∞-

semiadditive, which allows us to define

K[m](R) := K[m](Moddbl
R (SpT(n))).

K[m] is a functor between m-semiadditive categories, and we show the following:

Proposition 21. K[m] : Catst
m-fin → [m]צ is m-semiadditive.

In fact, more is true – we show that K[m] is in a sense obtained from K by forcing it to be
m-semiadditive.

3.2 Semiadditive Redshift

Recall that m-semiadditive functors can only decrease height, thus we conclude that

Proposition 22. If ht(C) ≤ n then ht(K[m](C)) ≤ n.

This does not look like redshift, instead, redshift happens at the stage of categorification.

Theorem 23. Let R ∈ Alg(SpT(n)), then ht(K[m](R)) ≤ n+ 1.

Proof sketch. Recall that all objects of SpT(n) have semiadditive height n, from which the same
follows for Moddbl

R . By the semiadditive redshift theorem, we get that ht(Moddbl
R ) ≤ n+ 1 as an

object of Catst
m-fin, so the result follows from the previous proposition.

Using the higher commutative monoid structure, Carmeli–Schlank–Yanovski defined height n
analogues of cyclotomic extensions R[ω(n)

p ] (which for n = 0 reproduce ordinary cyclotomic
extensions). Using these, one can say that R has height n p-th roots of unity, if R[ω(n)

p ] =∏
(Z/p)× R, which is satisfied, for example, for the Lubin–Tate spectrum En.

Theorem 24. If R ∈ Alg(SpT(n)) has height n p-th roots of unity, then ht(K[m](R)) = n+ 1.

3.3 Relationship to Chromatically Localized K-Theory

We have seen that higher semiadditive K-theory satisfies a form of redshift for semiadditive
height. First, note that semiadditive height n + 1 can only be measured when m ≥ n + 1.
Second, it would be interesting to connect it chromatically localized K-theory, which would in
particular allow us to measure height without assuming m ≥ n+ 1, addressing the first issue.
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Recall that I have mentioned that K[m] can be obtained from algebraic K-theory by forcing it
to be m-semiadditive. Also recall that since SpT(n+1) is ∞-semiadditive, there is a (smashing)
localization Lצ[m]

T(n+1) : [m]צ → SpT(n+1). Using these ideas, for C ∈ Catst
m-fin, we construct a

comparison map
LT(n+1) K(C)→ Lצ[m]

T(n+1) K[m](C)
which is an isomorphism if and only if for every m-finite p-space A, the assembly map

LT(n+1) K(CA) ∼−→ LT(n+1) K(C)A

is an isomorphism. As we see, this is very closely related to descent for chromatically localized
K-theory.

Theorem 25 (Clausen–Mathew–Naumann–Noel). The functor

CatLf
n

K−→ Sp
LT(n+1)−−−−−→ SpT(n+1)

commutes with limits indexed by 1-finite p-spaces.

Corollary 26. Let C ∈ CatLf
n,1-fin (e.g., Moddbl

R for R ∈ Alg(SpT(n))), then

L[1]צ

T(n+1) K[1](C) = LT(n+1) K(C).

In upcoming work with Carmeli, Schlank and Yanovski, we generalize this result to arbitrary m:

Theorem 27. The functor
CatLf

n

K−→ Sp
LT(n+1)−−−−−→ SpT(n+1)

commutes with limits indexed by m-finite p-spaces.

Corollary 28. Let C ∈ CatLf
n,m-fin, then

Lצ[m]

T(n+1) K[m](C) = LT(n+1) K(C).

Moreover, this result allows us to transport higher semiadditive constructions through chromat-
ically localized K-theory, for example, cyclotomic extensions:

Corollary 29. Let R ∈ Alg(SpT(n)), then

LT(n+1) K(R[ω(n)
p ]) = LT(n+1) K(R)[ω(n+1)

p ].

These results show that higher semiadditive K-theory, when pushed to SpT(n+1), agrees with
chromatically localized K-theory. As we have seen before, in many cases K[m](C) ∈ [m]צ is of
pure semiadditive height n + 1. One may wonder if it is in fact in SpT(n+1) ⊂ .[m]צ We show
that this question is closely related to the Quillen–Lichtenbaum conjecture for R, in the guise of
having a finite spectrum such that K(R)⊗X is bounded above. Using the Quillen–Lichtenbaum
property of S[p−1], and the descent result above, we settle the case of height 0 for any m ≥ 1:

Theorem 30. Let R ∈ Alg(Sp[p−1]), then

K[m](R) = LT(1) K(R).

For example, K[m](C) = KU∧p .

6



Finally, using Hahn–Wilson’s Quillen–Lichtenbaum result for BP〈n〉, we also answer the question
for the completed Johnson–Wilson spectrum Ê(n) ∈ SpT(n):

Theorem 31. We have
K[m](Ê(n)) = LT(n+1) K(Ê(n)).

(The case m ≥ 2 depends on the upcoming work with Carmeli, Schlank and Yanovski.)

3.4 Further Directions

• We conjecture that the last result holds for any R ∈ Alg(SpT(n)) and m ≥ 1.

• Develop a Blumberg–Gepner–Tabuada type universal property for K[m].

• Is splitting (co)fiber sequences needed.

• Semiadditive Grothendieck–Witt theory, as initiated by Carmeli–Yuan.
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