Higher Semiadditive Algebraic K-Theory and Redshift

Shay Ben-Moshe, joint work with Tomer Schlank arXiv:2111.10203, v2 coming soon

13/03/2023

Implicitly, whenever I say category I mean ∞ -category, etc.

1 Background on Redshift

1.1 Algebraic K-Theory

Let me begin by briefly reminding what is algebraic K-theory, in a way amenable to generalization later. Given a stable category $\mathcal{C} \in \operatorname{Cat}^{\operatorname{st}}$, the space of objects is a commutative monoid with respect to direct sums $\mathcal{C}^{\simeq} \in \operatorname{CMon}(\mathcal{S})$. Now, a commutative monoid can be group-completed by applying the left adjoint to the inclusion

$$(-)^{\operatorname{gpc}}$$
: CMon(\mathcal{S}) \rightleftharpoons CMon^{gl}(\mathcal{S}) = Sp_{>0},

just like the passage from $\mathbb{N} \mapsto \mathbb{Z}$. This gives us the direct sum K-theory

$$(\mathcal{C}^{\simeq})^{\mathrm{gpc}} \in \mathrm{Sp}_{>0}.$$

However, we have only used the fact that \mathcal{C} has direct sum, i.e., semiadditive, and not stability. Namely, we neglected (co)fiber sequences. Algebraic K-theory is obtained by doing the above while also forcing Y = X + Z for any (co)fiber sequence $X \to Y \to Z$, using, for example, the S_{\bullet} -construction. This assembles into a functor

 $K: Cat^{st} \to Sp_{\geq 0}$

Definition 1. For a ring spectrum $R \in Alg(Sp)$ (e.g., any ordinary ring) we let

$$\mathbf{K}(R) := \mathbf{K}(\mathrm{Mod}_R^{\mathrm{dbl}}(\mathrm{Sp})).$$

Example 2. $\mathrm{K}(\mathbb{C})_p^{\wedge} = \mathrm{ku}_p^{\wedge}$.

1.2 Chromatic Homotopy

A very useful paradigm in ordinary algebra is studying questions one prime at a time and then gluing the results. For simplicity, let us work *p*-locally (i.e., keep rational and characteristic *p* information, and ignore all characteristic $q \neq p$ information), then this decomposition is controlled by the fairly simple topological space

$$\operatorname{Spec}(\mathbb{Z}_{(p)}) = \{(0) \to (p)\}.$$

The chromatic picture shows that over the sphere spectrum, there are new characteristics

$$\operatorname{Spec}(\mathbb{S}_{(p)}) = \{(0) \to (p, 1) \to \dots \to (p, n) \to \dots \to (p, \infty)\}.$$

More specifically, there are localizations $L_{T(n)}$: Sp \rightarrow Sp_{T(n)} for every *n* (the case n = 0 reproduces rationalization), where the number *n* is called the *height*. Generally speaking, the information gets more complicated as the height increases.

Example 3. Topological K-theory is of height 1, $\mathrm{KU}_p^{\wedge} \in \mathrm{Sp}_{\mathrm{T}(1)}$.

1.3 Redshift

As we mentioned above, $K(\mathbb{C})_p^{\wedge} = ku_p^{\wedge}$, which shows that algebraic K-theory takes something of height 0 (as \mathbb{C} is rational) to something of height 1. This, along with more evidence when the input has height 1, has led Ausoni–Rognes to the far-reaching redshift conjecture. Their conjecture takes a specific strong form, out of which emerged a wider philosophy which can be loosely described as follows:

Conjecture 4. Algebraic K-theory increases chromatic height by 1.

Let me give one manifestation of this philosophy, which is not the original one, and was recently proven by a combination of breakthroughs. By a theorem of Hahn, if $R \in \text{CAlg}(\text{Sp})$ has $L_{\text{T}(k)}R = 0$, then $L_{\text{T}(k+1)}R = 0$ as well, thus R is supported on $0, \ldots, n$ for some n.

Theorem 5. Let $R \in CAlg(Sp)$ be supported on $0, \ldots, n$, then K(R) is supported on $0, \ldots, n+1$.

Clausen–Mathew–Naumann–Noel and Land–Mathew–Meier–Tamme showed that the support is at most n + 1. The other inequality was proven for examples at every height n by Hahn–Wilson and Yuan, and, building on that, for any R by Burklund–Schlank–Yuan.

2 Background on Higher Semiadditivity

2.1 *m*-Semiadditivity

Let us begin with ordinary algebra. The (1-) category Vect_k is

- pointed, i.e., initial object = terminal object,
- semiadditive, i.e., finite coproducts = finite products.

Because it is semiadditive, we can sum, which allows us to give the following definition.

Definition 6. Let G be a finite group acting on $V \in \text{Vect}_k$, we let

$$\operatorname{Nm} \colon \underbrace{V_G}_{=\operatorname{colim}_{\operatorname{BG}}V} \to \underbrace{V^G}_{=\operatorname{lim}_{\operatorname{BG}}V}, \quad \operatorname{Nm}([x]) := \sum_{g \in G} gx.$$

Observe that if |G| is invertible in k, then $\frac{1}{|G|}$ is an inverse to Nm, thus

Proposition 7. If char(k) = 0, then colimits = limits over finite groupoids. That is, let A be a finite groupoid and $X: A \to Vect_k$ be a diagram, then

$$\operatorname{Nm} \colon \operatorname{colim}_A X \xrightarrow{\sim} \lim_A X.$$

On the other hand, for example for $k = \mathbb{F}_p$ and $G = C_p$ acting trivially, we have Nm = 0, so this phenomenon does *not* happen at characteristic *p* for *p*-groups (but it does for prime-to-*p* groups). Surprisingly, this result, and a vast generalization of it, *does* hold in the intermediate characteristics $\operatorname{Sp}_{T(n)}$ for $n \geq 1$, eventhough they are *p*-complete, which we now move on to.

Definition 8. We say that a space A is an *m*-finite *p*-space if

- 1. $\pi_0 A$ is finite,
- 2. $\pi_i(A, a)$ is a finite *p*-group for every $a \in A$,
- 3. A is m-truncated, i.e., $\pi_i(A, a) = 0$ for i > m.

From now on I am going to implicitly assume that all *m*-finite spaces are *p*-spaces.

Example 9. We have

- (-1)-finite = \emptyset , *.
- 0-finite = finite set.
- 1-finite = finite coproduct of BG's where G is finite.

Definition 10. C is (*p*-typically) *m*-semiadditive if for any *m*-finite space A and $X: A \to C$ the norm map is an isomorphism

Nm:
$$\operatorname{colim}_A X \xrightarrow{\sim} \lim_A X.$$

In these terms, what we have seen before is that $\operatorname{Vect}_{\mathbb{F}_p}$ is 0-semiadditive but not 1-semiadditive, $\operatorname{Vect}_{\mathbb{Q}}$ is 1-semiadditive (and as a 1-category, automatically ∞ -semiadditive). Following a line of results by Greenlees–Hovey–Sadofsky, Kuhn and Hopkins–Lurie, we have:

Theorem 11 (Carmeli–Schlank–Yanovski). $Sp_{T(n)}$ is ∞ -semiadditive.

2.2 Higher Commutative Monoids

Higher semiadditivity gives a lot of extra structure and properties on the category, and I would like to emphasize one aspect, due to Harpaz. Let \mathcal{C} be a (0-)semiadditive category, then, as mentioned before, every object $X \in \mathcal{C}$ is canonically a commutative monoid. Namely, there are summation maps $\sum_A : X^A \to X$ for any finite set A, which are coherently commutative, associative and unital. Harpaz defined the notion of an *m*-commutative monoid, where one has similar "integration" maps $\int_A : X^A \to X$ for an *m*-finite *p*-space A, which are coherently commutative, associative and unital.

Example 12. Let \mathcal{C} be *m*-semiadditive, then every $X \in \mathcal{C}$ is canonically an *m*-commutative monoid with

$$\int_A : X^A = \lim_A X \xrightarrow{\operatorname{Nm}^{-1}} \operatorname{colim}_A X \xrightarrow{\nabla} X.$$

Theorem 13 (Harpaz). $CMon_m(S)$ is the universal presentable m-semiadditive category.

Definition 14. $\mathbf{Z}^{[m]} := \operatorname{CMon}_m(\operatorname{Sp})$ is the universal presentable *m*-semiadditive *stable* category.

Example 15. There is a canonical (smashing localization) functor $L_{T(n)}^{\mathbf{S}^{[m]}}: \mathbf{S}^{[m]} \to \mathrm{Sp}_{T(n)}$.

I would like to give one more example of an *m*-semiadditive category, which will play a significant role later.

Example 16. The category $\operatorname{Cat}_{m-\operatorname{fin}}$ of categories that have *m*-finite (*p*-space) colimits and functors preserving them is *m*-semiadditive. As such, every $\mathcal{C} \in \operatorname{Cat}_{m-\operatorname{fin}}$ is itself canonically an *m*-commutative monoid, with integration maps given by

$$\operatorname{colim}_A\colon \mathfrak{C}^A\to \mathfrak{C}$$

2.3 Semiadditive Height

Carmeli–Schlank–Yanovski observed that height can be measured using the commutative monoid structure on $X \in \mathbb{C}$. In the interest of time, I won't give the definition, but I will mention that, just like for spectra, an object can be supported at different heights. Using the integration maps for $A = B^n C_p$, they define when the *semiadditive height* ht(X) is $\leq n$ or > n.

Example 17. Every object $X \in \text{Sp}_{T(n)}$ has semiadditive height n.

Proposition 18. If $F : \mathfrak{C} \to \mathfrak{D}$ is *m*-semiadditive (preserves (co)limits over *m*-finite *p*-spaces), then $ht(X) \leq n$ implies $ht(F(X)) \leq n$.

If \mathcal{C} is *m*-semiadditive, then we can measure the height of every object $X \in \mathcal{C}$. On the other hand, since $\mathcal{C} \in \operatorname{Cat}_{m-\text{fin}}$ is itself an object of an *m*-semiadditive category, we can measure *its* height.

Theorem 19 (Semiadditive Redshift, Carmeli–Schlank–Yanovski). Let C be *m*-semiadditive, then TFAE

- $ht(X) \leq n$ for every $X \in \mathcal{C}$,
- $ht(\mathcal{C}) \leq n+1$, as an object of Cat_{m-fin} .

3 Higher Semiadditive K-Theory

3.1 Definition

Recall that to define algebraic K-theory, we observed that since the category is semiadditive the space of objects is a commutative monoid, which we then group-completed to get $(\mathcal{C}^{\simeq})^{\text{gpc}} \in \text{Sp}_{\geq 0}$. To actually get algebraic K-theory we also need to split (co)fiber sequences. Now, if $\mathcal{C} \in \text{Cat}_{m-\text{fin}}^{\text{st}}$, then as above the space of objects is an *m*-commutative monoid. We can thus take the group-completion while preserving this structure, namely apply the canonical functor

$$(-)^{\operatorname{gpc}} \colon \operatorname{CMon}_m(\mathfrak{S}) \to \operatorname{CMon}_m(\operatorname{Sp}) = \mathfrak{L}^{[m]},$$

giving an *m*-semiadditive version of direct sum K-theory. Again, we also want to split (co)fiber sequences, which we implement using the S_{\bullet} -construction, resulting in a functor

$$\mathbf{K}^{[m]} \colon \operatorname{Cat}_{m\text{-fin}}^{\mathrm{st}} \to \mathbf{\mathfrak{L}}^{[m]}.$$

The case m = 0 reproduces (*p*-localized) ordinary algebraic K-theory. From now on, I always assume $m \ge 1$.

Definition 20. For a ring spectrum $R \in Alg(Sp_{T(n)})$, we show that $Mod_R^{dbl}(Sp_{T(n)})$ is ∞ -semiadditive, which allows us to define

$$\mathbf{K}^{[m]}(R) := \mathbf{K}^{[m]}(\mathrm{Mod}_{R}^{\mathrm{dbl}}(\mathrm{Sp}_{\mathsf{T}(n)})).$$

 $\mathbf{K}^{[m]}$ is a functor between $m\text{-semiadditive categories, and we show the following:$

Proposition 21. $\mathbf{K}^{[m]}$: $\operatorname{Cat}_{m-\operatorname{fin}}^{\operatorname{st}} \to \mathbf{Z}^{[m]}$ is m-semiadditive.

In fact, more is true – we show that $K^{[m]}$ is in a sense obtained from K by forcing it to be *m*-semiadditive.

3.2 Semiadditive Redshift

Recall that m-semiadditive functors can only decrease height, thus we conclude that

Proposition 22. If $ht(\mathcal{C}) \leq n$ then $ht(K^{[m]}(\mathcal{C})) \leq n$.

This does not look like redshift, instead, redshift happens at the stage of *categorification*.

Theorem 23. Let $R \in Alg(Sp_{T(n)})$, then $ht(K^{[m]}(R)) \leq n+1$.

Proof sketch. Recall that all objects of $\text{Sp}_{T(n)}$ have semiadditive height n, from which the same follows for $\text{Mod}_R^{\text{dbl}}$. By the semiadditive redshift theorem, we get that $\text{ht}(\text{Mod}_R^{\text{dbl}}) \leq n+1$ as an object of $\text{Cat}_{m-\text{fin}}^{\text{st}}$, so the result follows from the previous proposition.

Using the higher commutative monoid structure, Carmeli–Schlank–Yanovski defined height n analogues of *cyclotomic extensions* $R[\omega_p^{(n)}]$ (which for n = 0 reproduce ordinary cyclotomic extensions). Using these, one can say that R has height n p-th roots of unity, if $R[\omega_p^{(n)}] = \prod_{(\mathbb{Z}/p)^{\times}} R$, which is satisfied, for example, for the Lubin–Tate spectrum E_n .

Theorem 24. If $R \in Alg(Sp_{T(n)})$ has height n p-th roots of unity, then $ht(K^{[m]}(R)) = n + 1$.

3.3 Relationship to Chromatically Localized K-Theory

We have seen that higher semiadditive K-theory satisfies a form of redshift for semiadditive height. First, note that semiadditive height n + 1 can only be measured when $m \ge n + 1$. Second, it would be interesting to connect it chromatically localized K-theory, which would in particular allow us to measure height without assuming $m \ge n + 1$, addressing the first issue.

Recall that I have mentioned that $K^{[m]}$ can be obtained from algebraic K-theory by forcing it to be *m*-semiadditive. Also recall that since $\operatorname{Sp}_{T(n+1)}$ is ∞ -semiadditive, there is a (smashing) localization $L_{T(n+1)}^{\mathbf{2}^{[m]}} : \mathbf{2}^{[m]} \to \operatorname{Sp}_{T(n+1)}$. Using these ideas, for $\mathcal{C} \in \operatorname{Cat}_{m-\operatorname{fin}}^{\operatorname{st}}$, we construct a comparison map

$$L_{\mathrm{T}(n+1)} \operatorname{K}(\mathcal{C}) \to L^{\mathbf{Z}^{[m]}}_{\mathrm{T}(n+1)} \operatorname{K}^{[m]}(\mathcal{C})$$

which is an isomorphism if and only if for every m-finite p-space A, the assembly map

$$L_{\mathrm{T}(n+1)} \operatorname{K}(\mathfrak{C}^A) \xrightarrow{\sim} L_{\mathrm{T}(n+1)} \operatorname{K}(\mathfrak{C})^A$$

is an isomorphism. As we see, this is very closely related to descent for chromatically localized K-theory.

Theorem 25 (Clausen-Mathew-Naumann-Noel). The functor

$$\operatorname{Cat}_{L_n^f} \xrightarrow{\mathrm{K}} \operatorname{Sp} \xrightarrow{L_{\mathrm{T}(n+1)}} \operatorname{Sp}_{\mathrm{T}(n+1)}$$

commutes with limits indexed by 1-finite p-spaces.

Corollary 26. Let $\mathcal{C} \in \operatorname{Cat}_{L_n^f, 1-\operatorname{fin}}(e.g., \operatorname{Mod}_R^{\operatorname{dbl}} for R \in \operatorname{Alg}(\operatorname{Sp}_{\operatorname{T}(n)}))$, then

$$L_{\mathrm{T}(n+1)}^{\mathbf{I}^{[1]}} \mathrm{K}^{[1]}(\mathcal{C}) = L_{\mathrm{T}(n+1)} \, \mathrm{K}(\mathcal{C})$$

In upcoming work with Carmeli, Schlank and Yanovski, we generalize this result to arbitrary m:

Theorem 27. The functor

$$\operatorname{Cat}_{L_n^f} \xrightarrow{\mathrm{K}} \operatorname{Sp} \xrightarrow{L_{\mathrm{T}(n+1)}} \operatorname{Sp}_{\mathrm{T}(n+1)}$$

commutes with limits indexed by m-finite p-spaces.

Corollary 28. Let $\mathcal{C} \in \operatorname{Cat}_{L_n^f, m\text{-fin}}$, then

$$L_{\mathcal{T}(n+1)}^{\mathbf{z}^{[m]}} \mathcal{K}^{[m]}(\mathcal{C}) = L_{\mathcal{T}(n+1)} \mathcal{K}(\mathcal{C}).$$

Moreover, this result allows us to transport higher semiadditive constructions through chromatically localized K-theory, for example, cyclotomic extensions:

Corollary 29. Let $R \in Alg(Sp_{T(n)})$, then

$$L_{\mathrm{T}(n+1)} \operatorname{K}(R[\omega_p^{(n)}]) = L_{\mathrm{T}(n+1)} \operatorname{K}(R)[\omega_p^{(n+1)}].$$

These results show that higher semiadditive K-theory, when pushed to $\operatorname{Sp}_{T(n+1)}$, agrees with chromatically localized K-theory. As we have seen before, in many cases $\operatorname{K}^{[m]}(\mathcal{C}) \in \mathfrak{Z}^{[m]}$ is of pure semiadditive height n + 1. One may wonder if it is in fact in $\operatorname{Sp}_{T(n+1)} \subset \mathfrak{Z}^{[m]}$. We show that this question is closely related to the Quillen–Lichtenbaum conjecture for R, in the guise of having a finite spectrum such that $\operatorname{K}(R) \otimes X$ is bounded above. Using the Quillen–Lichtenbaum property of $\mathbb{S}[p^{-1}]$, and the descent result above, we settle the case of height 0 for any $m \geq 1$:

Theorem 30. Let $R \in Alg(Sp[p^{-1}])$, then

$$\mathbf{K}^{[m]}(R) = L_{\mathbf{T}(1)} \mathbf{K}(R).$$

For example, $\mathrm{K}^{[m]}(\mathbb{C}) = \mathrm{KU}_p^{\wedge}$.

Finally, using Hahn–Wilson's Quillen–Lichtenbaum result for BP $\langle n \rangle$, we also answer the question for the completed Johnson–Wilson spectrum $\widehat{\mathbf{E}(n)} \in \mathrm{Sp}_{\mathrm{T}(n)}$:

Theorem 31. We have

$$\widehat{\mathbf{K}^{[m]}(\mathbf{E}(n))} = L_{\mathbf{T}(n+1)} \, \widehat{\mathbf{K}(\mathbf{E}(n))}.$$

(The case $m \ge 2$ depends on the upcoming work with Carmeli, Schlank and Yanovski.)

3.4 Further Directions

- We conjecture that the last result holds for any $R \in Alg(Sp_{T(n)})$ and $m \ge 1$.
- Develop a Blumberg–Gepner–Tabuada type universal property for $\mathbf{K}^{[m]}.$
- Is splitting (co)fiber sequences needed.
- Semiadditive Grothendieck–Witt theory, as initiated by Carmeli–Yuan.