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1 Introduction and Outline

Let me being by reminding two of the main theorems we have seen so far.

Theorem 1 (Sullivan). The functor Q(−) :
(
Sω,≥2
Q

)op
→ CAlgQ is fully faithful. In

particular, XQ = MapQ

(
QX ,Q

)
for X ∈ Sω,≥2.

Theorem 2 (Mandell). The functor F(−)
p :

(
Sω,≥2

p

)op
→ CAlgFp

is fully faithful. In

particular, Xp = MapFp

(
FX

p ,Fp

)
for X ∈ Sω,≥2.

The goal of this talk is to combine these results together with the Frobenius explained
in the previous talk, to present Allen Yuan’s results for an integral model for (finite
simply-connected) spaces. Our starting point is the arithmetic square, which essentially
says that integral data is obtained by p-complete information, rational information, and
gluing information:

Theorem 3 (Sullivan). Let X ∈ Sω,≥2, then there is a pullback square:

X

��

// ∏
pXp

��

XQ //
(∏

pXp

)
Q

The problem is that we don’t have a model for the bottom-right corner and the maps. If
we rationalize the p-adic model we get 0, as Fp⊗Q = 0, so something has to be modified.
Allen’s solution involves both lifting to mixed characteristic (i.e. Zp = WFp or rather a
lift to spectra Sp), and taking the Frobenius fixed points (and remember that we fixed
them!). We will start with a very rough outline of the paper, and then fill in (some of)
the details.
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Theorem (A). There is a category CAlgperf
p ⊆ CAlgp of p-perfect algebras, admitting

an action of S1 such that the monodromy of the action is the Frobenius ϕ : R ∼−→ R.

Example 4. Sp ∈ CAlgperf
p is a p-perfect algebra.

As in ordinary algebra, we can take the Frobenius fixed points. However, in this case the
trivialization is extra information, so that there is a category CAlgϕ=1

p of p-Frobenius
fixed algebras. We shall see that the p-complete sphere Sp is canonically p-Frobenius
fixed, i.e. that there is a canonical trivialization of its Frobenius, giving rise to an object
Sp,ϕ=1 ∈ CAlgϕ=1

p .

Theorem (B). The functor S(−)
p,ϕ=1 :

(
Sω,≥2

p

)op
→ CAlgϕ=1

p is fully faithful.

The last step is to globalize, and as we shall see it is enough to trivialize the p-Frobenius in
each prime separately. Namely, let CAlgperf ⊆ CAlg be the category of perfect algebras,
i.e. algebras that are p-perfect after p-completion for all p. Let CAlgϕ=1 be the category
of Frobenius fixed algebras, i.e. perfect algebras together with a trivialization of the
p-Frobenius for each p. Since each Sp is canonically p-Frobenius fixed, we get that S is
canonically Frobenius fixed, giving rise to Sϕ=1 ∈ CAlgϕ=1.

Theorem (C). The functor S(−)
ϕ=1 :

(
Sω,≥2)op → CAlgϕ=1 is fully faithful.

2 Frobenius - Theorem A

Recall that in ordinary algebra, for any commutative ring R, we have the Frobenius
ϕR : R → R/p and the canonical map canR : R → R/p. The map canR is an isomor-
phism iff R is an Fp-algebra, in which case we can consider the Frobenius morphism
as an automorphism. We then restrict to the perfect algebras (those where Frobenius
is invertible), such as Fp and Fp, CAlgperf

Fp
⊆ CAlgFp

. Furthermore, on some of those
algebras, the Frobenius is trivial, e.g. Fp, and we let CAlgϕ=1

Fp
⊆ CAlgperf

Fp
be their sub-

category. We thus get an adjunction CAlgϕ=1
Fp

(−)Z

� CAlgperf
Fp

, where the right adjoint is
given by the Frobenius fixed points RZ = {x ∈ R | ϕ (x) = x}.

Lior explained how to extend this to higher algebra. We have seen that for any commu-
tative algebra there is a ring map canR : R → RtCp as well as ϕR : R → RtCp . We then
defined the full subcategory of p-perfect algebras CAlgperf

p ⊆ CAlgp consisting of those
p-complete algebras that admit an invertible Frobenius.

Example 5. Sp and Sp are in CAlgperf
p , i.e. admit an invertible Frobenius.

As we have seen in Lior’s talk, one of Allen’s main results is:
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Theorem (A). S1 acts on CAlgperf
p , i.e. there is a diagram BS1 → Cat, such that the

monodromy of the action is the Frobenius ϕ : R ∼−→ R.

Definition 6. CAlgϕ=1
p =

(
CAlgperf

p

)hS1

, the category of p-Frobenius fixed algebras.

Corollary 7. There is an adjunction CAlgϕ=1
p

(−)hZ

� CAlgperf
p where the (underlying

algebra of) RhZ is the fixed points by the Frobenius.

The explanation of the definition and this corollary is, I think, the most confusing part
of the lecture. If you lose me you can just take this as a blackbox, but I will now try to
explain how this works by starting with a simpler case.

Consider the case of a finite group G acting on a category C, that is we have a diagram
BG→ Cat where the point is sent to C. In particular, for any object X ∈ C and element
g ∈ G we have another object gX ∈ C. Therefore, an object of the fixed point category
ChG = limBG (BG→ Cat) is an object X ∈ C together with identifications gX ' X for
every g ∈ G (note that it doesn’t make sense to ask that gX = X in a category). There
is a forgetful map ChG → C, sending

(
X, (X ' gX)g

)
to X. Somewhat surprisingly,

this functor has a right adjoint which I want to describe. Given an object X ∈ C, the
product of the orbit

∏
h∈G hX. Remember that for any g ∈ G we get another object,

and in this case g
∏

G hX =
∏

G ghX. As g acts by permuting the copies, there is a
canonical identification between

∏
hX '

∏
ghX, assembling together into an object of

ChG. To generalize, note that
∏

h∈G hX = limGX. Indeed, this can be made into an
adjoint C limG(−)−−−−−→ ChG.

In the case G = S1, everything works exactly the same. To think about this informally,
picture S1 = ∗ ⇒ ∗, so that the action is determined by a functor F : C → C (in our
case (−)tCp) and two natural isomorphisms ψ : id ⇒ F,ϕ : id ⇒ F (in our case can and
ϕ). A fixed point in ChS1 should then have an identification X ' FX, identified with
ψ and ϕ. All in all then, this is the data of the identification of ψ ' ϕ (in fact there
is more structure, by the compositions, e.g. F ◦2 and ψF X , FψX , ϕF X , FϕX and so on).
As above, given X ∈ C, the limit limS1 X thus admits the structure of an object in
ChS1 . To sum up, there is a forgetful map ChS1 → C and it has a right adjoint given by

C
limS1 (−)=(−)hZ

−−−−−−−−−−→ ChS1 .

3 Algebraic Extensions and “Frobenius Descent”

Remark 8. What follows is not the ordinary Galois descent of modules you might be
familiar with, although it is related.

In ordinary algebra, given R ∈ CAlgperf
Fp

we can consider R ⊗ Fp ∈ CAlgperf
Fp

, a perfect
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Fp-algebra, yielding a pair of adjunctions:

CAlgϕ=1
Fp

(−)Z

� CAlgperf
Fp

�
−⊗Fp

CAlgperf
Fp

Theorem 9. The composition CAlgϕ=1
Fp
→ CAlgperf

Fp
is fully faithful.

Proof. This is equivalent to showing that the unit map of the adjunction is an isomor-
phism. Let R ∈ CAlgϕ=1

Fp
, the Frobenius of R ⊗ Fp is ϕR⊗Fp

= ϕR ⊗ ϕFp
= id⊗ ϕFp

, so

that the fixed points are indeed
(
R⊗ Fp

)Z
= R.

As explained by Lior, there is a lift of Fp → Fp denoted Sp → Sp, where Sp is called
the spherical Witt vectors. It satisfies π0Sp/p = Fp, and has a Frobenius (i.e. p-perfect
Sp ∈ CAlgperf

p ) whose reduction is the Frobenius on Fp (and in a way it is determined
by these properties). As in ordinary algebra, we get an adjunction:

CAlgϕ=1
p

(−)hZ

� CAlgperf
p �

−⊗Sp

CAlgperf
Sp

Definition 10. We denote Sp,ϕ=1 := ShZ
p , i.e. the fixed points by the Frobenius.

Proposition 11. Forgetting the trivialization of the Frobenius on Sp,ϕ=1 gives Sp.

Proof. We know that ShZ
p = eq

(
Sp

1
⇒
ϕ

Sp

)
. The composition of the unit map Sp → Sp

with 1 and with ϕ is still the unit map (since both are trivial on Sp), so it maps to the

equalizer. Thus we need to show that Sp
∼−→ eq

(
Sp

1
⇒
ϕ

Sp

)
, which follows from the fact

π∗Sp = π∗Sp ⊗Zp Zp and the fact that Frobenius acts only on the Zp part.

Theorem 12. The composition −⊗ Sp : CAlgϕ=1
p → CAlgperf

Sp
is fully faithful.

Proof. Again it suffices to show that the unit is an isomorphism, so we show that for
any Rϕ=1 ∈ CAlgϕ=1

p we have Rϕ=1
∼−→
(
R⊗ Sp

)hZ
. Since the Frobenius is trivial on

R, it easy to show that
(
R⊗ Sp

)hZ
= R ⊗ ShZ

p , so the result follows from the previous
proposition.

4



4 A p-adic Model

Proposition 13. The functor S(−)
p :

(
Sω,≥2

p

)op
→ CAlgperf

Sp
is fully faithful.

Proof. The claim will follow from Mandell’s theorem if we show that the following map
is an equivalence

MapSp

(
SX

p , S
Y
p

) ∼−→ MapFp

(
FX

p ,F
Y
p

)
.

As both sides take colimits in Y to limits, it suffices to prove this for Y = ∗. By
adjunction, the RHS is MapSp

(
SX

p ,Fp

)
. Therefore we need to show that the result does

not change if we switch from Fp to Sp. I will not explain this, but this is a similar rigidity
phenomenon to Hensel’s lemma.

5 Another p-adic Model - Theorem B

Definition 14. We define the functor S(−)
p,ϕ=1 :

(
Sω,≥2

p

)op
→ CAlgϕ=1

p as the composition

X to SX
p,ϕ=1 :=

(
SX

p

)hZ
.

Theorem (B). The functor S(−)
p,ϕ=1 is fully faithful.

Proof. Note that the Frobenius on SX
p is trivial because of the naturality of the Frobenius,

so that SX
p is in the essential image of the fully faithful functor − ⊗ Sp : CAlgϕ=1

p →
CAlgperf

Sp
. The result then follows because

MapSp,ϕ=1

(
SX

p,ϕ=1,SY
p,ϕ=1

)
= MapSp

(
SX

p , S
Y
p

)
= Map (Y,X) .

6 Integral Model - Theorem C

We define CAlgperf ⊆ CAlg as the category of perfect algebras, i.e. algebras that are
p-perfect after p-completion for all p. In addition, we define the category CAlgϕ=1 of
Frobenius fixed algebras as the pullback

CAlgϕ=1

��

// ∏
p CAlgϕ=1

p

��
CAlgperf // ∏

p CAlgperf
p
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i.e., perfect algebras with a trivialization of the p-Frobenius for each p separately. We
obtain the object Sϕ=1 ∈ CAlgϕ=1 from S and Sp,ϕ=1. The functors S(−)

p,ϕ=1 and S(−) then
assemble to a functor S(−)

ϕ=1 :
(
Sω,≥2)op → CAlgϕ=1.

Theorem (C). The functor S(−)
ϕ=1 :

(
Sω,≥2)op → CAlgϕ=1 is fully faithful.

Proof. We check that the unit is an isomorphism, i.e. that X ∼−→ MapSϕ=1

(
SX

ϕ=1, Sϕ=1
)
.

Consider the following diagram:

MapSϕ=1

(
SX

ϕ=1,Sϕ=1
)

��

// ∏
p MapSp,ϕ=1

(
SX

p,ϕ=1,Sp,ϕ=1
)

��

MapS

(
SX , S

)

��

// ∏
p MapSp

(
SX

p , Sp

)
��

MapQ

(
QX ,Q

)
//MapS

(
SX ,

(∏
p Sp

)
Q

)

The upper square is a pullback square by definition of the category CAlgϕ=1. The bottom
square is a pullback square, obtained by adjunctions and applying MapS

(
SX ,−

)
to the

arithmetic square S =
∏

p Sp×(∏
p
Sp

)
Q

Q. Therefore the big square is a pullback square.

By the rational model, the bottom left is a XQ. By Allen’s p-adic model, the upper
right corner is

∏
pXp. By more results proved by Mandell, the bottom right corner

is
(∏

pXp

)
Q

(and the two maps are the expected once). Therefore, by the arithmetic
square of X, the top left corner is indeed X.
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