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The goal in this talk is to explain the construction of the δ-operation of Section 4 of
https://arxiv.org/abs/1811.02057, which is used in the proof of the main theorem
explained in the previous talk. However, this talk is independent of many of the previous
talks, and will only depend on a few basics things about 1-semiadditivity, so hopefully
if you are a bit lost, you will still be able to follow this talk and see an example of how
semiadditivity is utilized.

I will not follow the reference exactly, rather I will give a simpler presentation of the
same objects (and some generalization).

1 Additive p-Derivations

We begin by defining and studying additive p-derivations on (ordinary) rings.

Definition 1. Let R be a commutative ring. An additive p-derivation on R is a function
of sets δ : R→ R satisfying

1. (normalization) δ (0) = δ (1) = 0.

2. (additivity) δ (x+ y) = δ (x) + δ (y) + xp+yp−(x+y)p

p (note that the last term is in
fact a polynomial with integer coefficients, involving no division by p.)

Remark 2. The axioms guarantee that ϕδ (x) = xp + pδ (x) is an additive lift of Frobe-
nius, so the additivity axiom can be understood as the correction necessary to make ϕδ
additive. (When R is p-torsion free, δ and ϕδ determine each other, but this is not true
generally.)
Remark 3. You may be familiar with the notion of p-derivation, which imposes a further
multiplicative condition, which also makes ϕδ above a ring homomorphism. We will not
impose this axiom.

Example 4. The Fermat quotient on Z given by δ̃ (x) := x−xp

p . Recall that Fermat’s
little theorem indeed says that xp = x mod p, so that this function is well defined. In
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fact, it is fairly straightforward to show that δ̃ is the unique p-derivation on Z. The
crucial property of δ̃ is that it decreases the p-adic valuation by 1 (when it is > 0). To
see this, note that νp (xp) = pνp (x) > νp (x), so that νp

(
x
p −

xp

p

)
= νp

(
x
p

)
= νp (x)− 1.

Furthermore, δ̃ can be extended to Q.

Lemma 5. For x ∈ R and n ∈ N we have δ (nx) = nδ (x) + δ̃ (n)xp.

Proof. Straightforward induction using the additivity axiom.

Note that the mere existence of a p-derivation on R is a very restrictive property, as
demonstrated by the following

Proposition 6. Assume that R is p-local, and admits some additive p-derivation δ.
Then, every torsion element is also nilpotent. In particular, if R⊗Q = 0 then R = 0.

Proof. Let x be a torsion element, since R is p-local we know that pmx = 0 for some
m. Now, applying δ we get from the previous lemma 0 = δ (0) = δ (pmx) = pmδ (x) +
δ̃ (pm)xp. Multiplying by x, since pmx = 0 we get δ̃ (pm)xp+1 =, and as δ̃ (pm) has
p-adic valuation m− 1 so we get pm−1xp+1. Iterating this m times, we get x(p+1)m = 0.

For the last part, if R⊗Q = 0 then 1 is torsion, so in particular it is nilpotent, meaning
that 1 = 1n = 0, i.e. R = 0.

Example 7. As an anti-example, Z/pm has no additive p-derivations.

2 Construction of the δ Power Operation

Our next goal is to construct such a δ on certain rings coming from homotopy, gen-
eralizing from the rational case (height 0) where we have δ̃, to higher heights. More
specifically, let C be a symmetric monoidal 1-semiadditive p-local stable presentable ∞-
category, like SpK(n) and SpT(n). Let X ∈ CAlg (C), then R = π0X = π0 hom (1C , X) has
a commutative ring structure. We will endow it with an additive p-derivation δ : R→ R.

Here’s the plan - first we will construct a family of power operations αG,A : R→ R using
1-semiadditivity and the multiplicative structure of X (none of which is δ). Then, we
will explain how in the case C = SpQ these operations reproduce x

p and xp

p , from which
we can construct the Fermat quotient δ̃ (x) = x−xp

p . Following these steps in the general
case will give us δ.

Let A be a finite set with a G-action for some finite group G, we will construct an
operation αG,A : R→ R. Let x ∈ R, and consider it as an element x ∈ hom (1C , X). We
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claim that x|A| ∈ hom (1C , X) has an Aut (A)-action, coming from the commutativity of
X.

1C //

��

X⊗A //

��

X

1C/Aut (A) // X⊗A/Aut (A)

99

The top composition is by definition x|A|. Since the multiplication on X is commutative,
and we are taking the product of an element with itself, we have a factorization through
the Aut (A)-orbits. This gives us a map BAut (A)→ hom (1C , X) whose value at a point
is by definition x|A|, i.e. endows it with an Aut (A)-action. Now, since A has a G-action,
we can pre-compose to get an action of G, that is BG→ BAut (A)→ X.

Definition 8. We define αG,A : R→ R by αG,A (x) =
∫

BG x
|A|.

Remark 9. The construction did not use the whole E∞-structure but only the power
operations, so it suffices to assume that X is an H∞-algebra.

We now consider this construction in the rational case, where it simplifies significantly.

Proposition 10. Let C = SpQ, then αG,A (x) =
∫

BG x
|A| = x|A|

|G| .

Proof. We have essentially seen this, i.e. that generally in the rational case,
∫

BG y = y
|G| ,

let me repeat the argument. First note that the G-action is trivial, because there are
no non-trivial maps BG → X from B of a finite groups to a rational spectrum (this is
essentially the fact that the rational cohomology of finite groups vanishes). Second, the
norm map of a constant local system in the rational case is multiplication by |G|, whose
inverse is 1

|G| , which finishes the argument.

Example 11. For A = ∗ with the trivial G = Cp action, αCp,∗ (x) =
∫

BCp
x = x

p .

Example 12. For A = Cp with the regular G = Cp action, αCp,Cp (x) =
∫

BCp
xp = xp

p .

Corollary 13. For C = SpQ we have δ̃ (x) = x−xp

p = αCp,∗ (x)− αCp,Cp (x).

This can now be made into a definition.

Definition 14. Let C be as above and X ∈ CAlg (C), and consider R = π0X. We define
δ : R→ R by δ (x) := αCp,∗ (x)− αCp,Cp (x) =

∫
BCp

x−
∫

BCp
xp.

Theorem 15. δ is an additive p-derivation on R.

Remark 16. Note that the Cp action on Cp did not matter in the rational situation, but
it will be used to prove that δ is an additive p-derivation in general.

We shall return to the proof after we draw a few corollaries.
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Corollary 17. Every torsion element of R is also nilpotent. In particular, if R⊗Q = 0
then X = 0.

Proof. Follows immediately from the corresponding fact for rings, and the fact that if
π0X = 0 then the unit of X is 0 so that X = 0.

3 May’s Conjecture

May’s conjecture was proven by Mathew-Naumann-Noel in 2014. We will demonstrate
an alternative proof, which is immediate using the above considerations (together with
the Nilpotence theorem). I find this example interesting, because it considers ring spectra
not in the 1-semiadditive situation, but semiadditivity consideration can still solve it.
Remark 18. We say that a ring spectrum E detects nilpotents if for any ring spectrum
X and x ∈ π∗X whose image in π∗ (X ⊗ E) is nilpotent, x itself is nilpotent. This is
equivalent to having X ⊗ E = 0 =⇒ X = 0, by applying it to x−1X.

Corollary 19. Let X ∈ CAlg (Sp) such that X ⊗ Q = 0, then LT(n)X = 0 for any
0 ≤ n <∞, which also implies LK(n)X = 0.

Proof. We know that the unit 1 ∈ X is torsion, so the same holds for LT(n)X ∈
CAlg

(
SpT(n)

)
which then satisfies the previous corollary, so that LT(n)X = 0.

Corollary 20. Let X ∈ CAlg (Sp) such that X ⊗ Z = 0, then X = 0.

Proof. By assumption X ⊗Z = 0 so that also X ⊗Q = (X ⊗ Z)⊗Z Q = 0 and similarly
X⊗Fp = 0. By the previous part, we get that LK(n)X = 0, i.e. K (n)⊗X = 0, for every
finite n. We conclude the proof by the Nilpotence Theorem.

Remark 21. As before, don’t need the E∞-structure, and H∞-algebra suffices.

4 Proof of the Main Theorem

Theorem 22. δ (x) =
∫

BCp
x−

∫
BCp

xp is an additive p-derivation on R.

Proof. For the normalization part, first it is clear that δ (0) = 0. For x = 1, one can
easily show that the Cp action on 1p = 1 is trivial, so that δ (1) =

∫
BCp

1−
∫

BCp
1 = 0.

We need to show that additivity condition δ (x+ y) = δ (x)+δ (y)+xp+yp−(x+y)p

p . Clearly∫
BCp

(x+ y) =
∫

BCp
x+

∫
BCp

y, so we shall show that
∫

BCp
(x+ y)p =

∫
BCp

xp+
∫

BCp
yp+

(x+y)p−xp−yp

p (note that the numerator is reversed, compatibly with the minus sign).
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The idea is to open the parentheses of (x+ y)p, and combine things by their Cp-orbit.
Let S be the set of all words of length p in 2 letters which are not all the same, then

(x+ y)p = xp + yp +
∑
w∈S

w (x, y) = xp + yp +
∑

[w]∈S/Cp

∑
g∈Cp

gw (x, y) .

Each orbit [w] ∈ S/Cp yields a term
∑
g∈Cp

gw (x, y). Note that this the sum of w (x, y)
along the Cp-orbit, namely if we let p : ∗ → BCp be the map choosing the point, whose
fibers are Cp, then

∫
pw (x, y) =

∑
g∈Cp

gw (x, y). Then, we wish to integrate this using∫
BCp

, and recall this is just
∫
q for q : BCp → ∗. Note that qp : ∗ → ∗ is the identity,

which gives us∫
BCp

∑
g∈Cp

gw (x, y) =
∫
q

∫
p
w (x, y) =

∫
qp
w (x, y) = w (x, y) .

Note that commutativity, without the Cp-action, we have w (x, y) = xwxywy =
∑

g∈Cp
xwxywy

p ,
so we just get the binomial terms∫

BCp

∑
w∈S

w (x, y) =
∫

BCp

∑
[w]∈S/Cp

∑
g∈Cp

gw (x, y)

=
∑

[w]∈S/Cp

∫
BCp

∑
g∈Cp

gw (x, y)

=
∑

[w]∈S/Cp

∑
g∈Cp

xwxywy

p

=
∑
w∈S x

wxywy

p

= (x+ y)p − xp − yp

p
.
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