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We are going to have E∞-rings, En-pages of spectral sequences and Morava
E-Theory En. To avoid at least a little of the confusion, I call E∞-rings simply
ring spectra.

We consider θj and h2
j , which live in the 2-local parts of the homotopy groups

of spheres. Therefore, we can 2-localize all of our spectra, and we won’t write
this every time.

The main reference for this is the paper [HHR09]. Also very useful are [HHR10;
Mil11]. Lastly, in 2016 there was a Talbot on this topic [Tal16], with full (typed!)
notes by Eva Belmont.

1 Idea of the Proof

Recall that in Shaul’s talk we saw:

Theorem (Browder). A manifold of Kervaire invariant one exists if and only
if h2

j ∈ E2,2j+1

2 (S, HF2) = Ext2,2j+1

A (F2,F2) survives to the E∞-page, i.e. it
supports an element θj ∈ π2j+1−2S.

The elements θj for 1 ≤ j ≤ 5 were constructed by explicit computations. The
purpose of HHR’s paper is to show:

Theorem ([HHR09, Theorem 1.1]). For j ≥ 7, h2
j doesn’t survive to the E∞-

page, i.e. the element θj doesn’t exist.

The bottom line of the proof is very simple. Find a spectrum with a map S→ Ω
such that it detects θj , i.e. if θj exists its images is non-zero, and show that
that π2j+1−2Ω = 0, which together contradict the existence of θj . To be more
precise, the proof of theorem is as follows. First, we construct some spectrum
Ω together with a map S→ Ω, and prove the following 3 theorems (for j ≥ 7):

Theorem (Detection). If θj exists, its image in π2j+1−2Ω is non-zero.
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Theorem (Gap). π−2Ω = 0 (in fact π−1, π−3 vanish as well).

Theorem (Periodicity). πiΩ = πi+27+1Ω (in fact Ωi (X) is 27+1-periodic for
all X).

Each one of these constitutes a major part of the proof, and together the im-
mediately imply the result above. We will devote the next lectures to proving
these theorems. Today we will motivate and construct Ω (to some extent), and
discuss some aspects of these theorems.

2 Motivating Ω

Say you have an element in πiS. How can you detect it, i.e. show that it is
non-zero? One standard method is as above, find some map S→ A under which
you can prove that the element is not mapped to 0.

Everything that follows is just motivation for the construction of Ω, I hope this
will be at least somewhat clear to everyone, but don’t worry if it isn’t, as it is
just motivation.

Let’s take a simpler case then θj , j ≥ 7, which will shed some light on what’s
going on in this paper. Say we want to detect θ1 ∈ π21+1−2S = π2S (which is
indeed non-zero). This element is the square of the Hopf fibration η : S3 → S2

(represented in the ASS by h1), i.e. θj = η2 : S4 Ση−−→ S3 η−→ S2. A way to detect
it is using KO. Indeed, KO is a ring and in particular has a map S→ KO, and
it is classical that the image of η2 generates π2KO ∼= Z/2, and in particular it’s
image is non-zero, thus η2 is non-zero (see for example [Sch07, page 22]).

We seek to generalize this, so we should understand where KO comes from.
One can construct (we won’t but we will do something similar later) a C2-ring
spectrum KUR, whose underlying spectrum is KUR = KU, and KUhC2

R = KO.
Since it is a C2-ring spectrum, we get the map S→ KUhC2

R = KO from above.

This lends itself to a generalization. Consider Morava E-theory En (at prime
2), the case n = 1 being E1 = KU. These are known to be ring spectra acted by
the Morava Stabilizer group Gn via ring maps (Goerss-Hopkins-Miller-Lurie).
Similarly to the above, we can choose our favorite subgroup G < Gn, and
consider the map S→ EhGn . This can potentially detect some new elements.

Furthermore, using the proof of the Nilpotence Theorem (vanishing line), one
can show that the homotopy groups of such EhGn are periodic for some power
of 2, which would yield the Periodicity Theorem (at least for some power of 2).

Lastly, it was known to HHR (see [HHR10, Remark 6.10]) that π−2 (and
π−3, π−1) vanish forKO = EhC2

1 and for EhC4
2 (unpublished), which is a promis-

ing hint towards the Gap Theorem.
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It looked to HHR as though EhC8
4 , for C8 ≤ G4 could serve as Ω in their proof.

However, it turned out that actually showing that π−2E
hC8
4 = 0 was a very hard

computation using the homotopy fixed points spectral sequence (see [HHR10,
p. 3.3]).

Instead, they decided to look for another spectrum. Recall the map S→ KUR
which gave us S → KUhC2

R = KO. In fact, this map factors as S → MUR →
KUR, where MUR is MU with a genuine C2 action (which we will construct
later), and the second map is the complex orientation (furthermore, KUR can
be constructed fromMUR). This gives us a map S→MUhC2

R → KUhC2
R = KO,

so this is enough to detect η2. We can mimic this. Recall that E4 is equipped
with an action of C8, and we can in fact promote it to a genuine C8-ring.
Consider the map S → MUR → E4 where E4 is the restriction to C2-rings.
Using that the norm is the adjoint to the restriction, this norms up to a map
S → MU((C8)) = NC8

C2
MUR → E4. Taking C8 homotopy fixed points gives

S→
(
MU((C8)))hC8 → EhC8

4 so this will hopefully suffice to detect θj for j ≥ 7.

However, there is no reason to believe that this spectrum will be periodic. To
get that, one has to invert something. Indeed, they carefully find some analogue
of the Bott class D : S`ρ8 → MU((C8)) (where ρ8 = R [C8]), which will make it
periodic and won’t ruin the other properties. Then, they define the C8 genuine
spectrum ΩO = D−1MU((C8)), and Ω = ΩhC8

O is finally the desired spectrum.

Everything above was just a motivation, if you lost me, here’s the bottom line:

1. Construct MUR,

2. Norm up to C8 to get MU((C8)) = NC8
C2
MUR,

3. Invert something to get ΩO = D−1MU((C8)) (we will not talk about D
today too much),

4. Take Ω = ΩhC8
O .

3 Construction of MUR

We now constructMUR, as a very simple application of the theory we developed
in the first part of the seminar. First, we recall that using the fiber bundles
γU
n : EU (n) → BU (n), γO

n : EO (n) → BO (n) and their Thom spaces, we can
construct the ring spectra MU and MO. Now we do the two constructions at
the same time.

C2 has two irreducible representations over R, both of them one dimensional,
and we denote them 1, α. Consider the action of C2 on C by conjugation (not
C-linear), with fixed points R. This C2-representation is ρ = 1 + α.

Via this action, C2 acts on U (n) with fixed points O (n), i.e. we get a C2-group
which we denote by U (n) that has U (n) = U (n) and U (n)C2 = O (n). In this
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world we can now form the classifying space γUn : EU (n)→ BU (n) (e.g. by bar
construction). Now we can take Th

(
γUn
)
∈ S

Oop
C2 . Now, rkρ

(
γUn ⊕ ρ

)
= n+ 1, so

this bundle is a pullback of γUn+1, i.e. there is a map fn : BU (n)→ BU (n+ 1)
(actually just the B of the map that takes a matrix and adds a 1 at the end
of the diagonal) such that γUn ⊕ ρ = f∗nγ

U
n+1. This gives a map Σρ Th

(
γUn
)

=
Th
(
γUn ⊕ ρ

)
→ Th

(
γUn+1

)
. This motivates normalizing as follows, using the

functor Σ∞C2
: S

Oop
C2 → SpC2 , define MUR (n) = Σ−ρnΣ∞C2

Th
(
γUn
)
, and the

above map gives usMUR (n)→MUR (n+ 1). We denote the colimit byMUR =
colimMUR (n). Moreover, the multiplication maps U (n)×U (m)→ U (n+m),
and the identity 1→ U (n), make MUR into a ring.

Note that by construction Th
(
γUn
)

= Th
(
γU
n

)
and Th

(
γUn
)C2 = Th

(
γO
n

)
. Re-

call that Lior told us that for X ∈ SO
op
G we have ΦH (Σ∞GX) = Σ∞XH , thus we

get that MUR = Φ1MUR = MU and ΦC2MUR = MO.

4 Construction of MU((C8))

We defineMU((C8)) = NC8
C2
MUR, so let’s recall what the norm is. In fact, MUR

is a genuine C2-ring spectrum and we want MU((C8)) to be a genuine C8-ring
spectrum.

Generally, let H ≤ G be a subgroup, and consider the forgetful CAlg (SpH) →
CAlg (SpG). Its left adjoint is the norm NG

H : CAlg (SpH) → CAlg (SpG) (in
the sense that the underlying G-spectrum of this norm, is the norm (of spectra,
not rings) of the underlying H-spectrum).

In our case,MU((C8)) can be thought of as the spectrumMUR⊗MUR⊗MUR⊗
MUR, where the generator of C8 acts by (a, b, c, d) 7→

(
d, a, b, c

)
.

5 Idea of the Proof, Again

Recall that the main theorem follows easily from the Detection, Gap and Peri-
odicity theorems. We now refine them.

The proof of the Gap Theorem actually splits into two parts. Recall that we
have defined Ω = ΩhC8

O , but ΩO is a genuine C8 spectrum, therefore we can
also consider the declared fixed points which map to the homotopy fixed points
ΩC8

O → ΩhC8
O . This is where we use the power of genuine G-spectra. The original

Gap theorem follows easily from the following two results:

Theorem (Homotopy Fixed Point). The map ΩC8
O
∼−→ ΩhC8

O is an equivalence.

Theorem (Gap). π−2
(
D−1MU((C8)))C8 = 0 for any D : S`ρ8 →MU((C8)) (in

fact π−1, π−3 vanish as well).

4



These two theorems and the Periodicity Theorem are proved by the slice spectral
sequence (although the former considers the declared fixed points and the latter
the homotopy fixed points, which are, as we said, equivalent). The proof of the
Homotopy Fixed Point, Periodicity and Detection theorems depend crucially on
the choice of D, most conditions coming from the Detection theorem.

The Detection Theorem is proved directly from the Algebraic Detection Theo-
rem, which we now turn to.

6 The Detection Theorem

Recall that we want to prove that if θj exists, its image in π2j+1−2Ω is non-
zero. How can we show something like that? One possible way, is using spectral
sequences. Recall that we have seen in Shaul’s talk (Browder) that θj exists iff
h2
j ∈ E

2,2j+1

2 (S, HF2) is a permanent cycle (supporting θj). We have a spectral
sequence computing the homotopy groups of Ω = ΩhC8

O , namely the homotopy
fixed point spectral sequence (which we will review soon). The trouble is that
there is a priori no map between those spectral sequences, although we have a
map S→ Ω. To handle this, we form a span of spectral sequences.

HF2-based ASS of S

��

MU-based ANSS of Soo //

��

C8 homotopy fixed point SS of ΩO

��
π∗S π∗S // π∗Ω

Recall that Shachar showed us how to construct the HF2-based ASS for a spec-
trum X. The idea was to look at the resolution of X by the cosimplicial object
X ⊗HF⊗n+1

2 , use the maps to build a filtration (Adams filtration) which gives
rise to a spectral sequence. This construction can be carried with HF2 replaced
by another ring spectrum E, which will then (under some conditions) converge
to π∗LEX. For example, this can be done for MU, for which LMUS = S. Fur-
thermore, HF2 is complex oriented, i.e. it admits a map (of rings!) MU→ HF2,
which clearly gives a map of cosimplicial objects X⊗HF⊗n+1

2 → X⊗MU⊗n+1.
We specialize to the case X = S, yielding HF⊗n+1

2 →MU⊗n+1.

Now, let A be G-spectrum, and say we want to compute the homotopy groups
of AhG. Recall that AhG = MapG (EG,A). Now, EG has a simplicial model,
EGn = Gn+1 (i.e. |EG•| is a model for EG). This gives us a cosimplicial object
Cn (G;A) = MapG (EGn, A) ∼=

∏
Gn A, which gives a resolution of AhG. The as-

sociated spectral sequence has E2 page given by Es,t2 (G,A) = Hs (G;πtA), and
converges to πt−sAhG. Note that C0 (G;A) = A. We specialize to Cn (C8,ΩO).

Now, ΩO is complex orientable, i.e. admits a map MU → ΩO = C0 (C8,ΩO)
(because it was constructed from it). We have n + 1 maps C0 (C8,ΩO) →
Cn (C8,ΩO), the i-th of which corresponding to the map [0]→ [n] going to the
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i-th vertex. Use this to define the i-th coordinate of MU⊗n+1 → Cn (C8,ΩO).
This gives the second map of spectral sequences. Conceptually, this map corre-
sponds to the inclusion of the single point π∗ΩO with C8-action, in the moduli
stack of formal group laws.

Now, we claim that the following will imply the Detection Theorem.

Theorem (Algebraic Detection). Let x ∈ E2,2j+1

2 (S,MU) be an element map-
ping to h2

j ∈ E
2,2j+1

2 (S, HF2), then its image bj ∈ H2 (C8, π2j+1ΩO) is non-zero.

Proof of Detection Theorem. Assume that θj exists, then by Browder, it is
supported by h2

j . Moreover, it must be supported by some element in x ∈
E∗,∗2 (S,MU). The Adams filtration can only decrease by maps, and E0,∗

2 (S,MU) , E1,∗
2 (S,MU) =

0 by classical computations, so x ∈ E2,2j+1

2 (S,MU), mapping to h2
j . There-

fore, by the Algebraic Detection Theorem, its image bj ∈ H2 (C8, π2j+1ΩO) is
non-zero. The only differential that can hit it, is d2 : H0 (C8, π2j+1−1ΩO) →
H2 (C8, π2j+1ΩO) (because the others are negative cohomology groups). Note
that ΩO was constructed from MUR which is even, and taking the norm and
inverting D preserve that, thus the source of the d2 is 0, so bj is a permanent
cycle. This means that the image of θj in π2j+1−2Ω is indeed non-zero.
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