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Some useful references for this talk are as follows. The classical paper is [1]. A
good reference with a lot of details for homotopists is [3]. For a short overview,
which I find a little difficult to follow, but takes a simpler route to the theorem
is in [2, mostly lecture 21]. A more modern approach, which gives a very nice
overview, but not very detailed is [4].

This lecture will consider something fairly classical, the theory of deformations
of formal group laws. This in essence to (non-spectral) algebraic geometry
and number theory, and doesn’t use any homotopy or higher category theory
(actually a little bit of 2-categories in the way we phrase things). This of course
has connections to homotopy theory, via chromatic homotopy theory, but we
will not take about this at all in this lecture. The goal of the first and second
parts of this talk, which are the most important parts, is to give an exposition
of the constructions and the main theorem from a modern point of view. In the
third part we will take the classical point of view on this theory. Then in the
fourth part we will consider the functoriality of this construction, again from the
more modern perspective. Lastly, if we have time, we will say something on the
Morava stabilizer group. Hopefully this lecture will also be a good supplement
to standard material on this theory.

1 Formal Group Laws & Height

We first recall our definition of a formal group law. We will take the coordinate-
free approach we have already seen in this course, which has the advantage
of being conceptually clearer. However, actually the main statement will be
completely independent of the specific model we choose for formal group laws.
Furthermore, we will reinterpret everything later in the classical way it was
done, which may help to make things more elementary, and will also give us
some insights.

Let R be a ring. For a finitely generated projective moduleM over R, we defined
Spf (R [[M ]]) : CAlgR → Set. A formal scheme is a functor CAlgR → Set that
is isomorphic to some Spf (R [[M ]]), but without the data of the isomorphism.
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A formal group over R is a lift of such a functor to Grp, i.e. it is a functor
G : CAlgR → Grp, such that the composition with the forgetful G : CAlgR →
Grp → Set is isomorphic to Spf (R [[M ]]) for some M . Note that given a map
α : R → S, which should be though of as α : SpecS → SpecR, we can define
α∗G : CAlgS → CAlgR → Grp. We also have a definition of the tangent space,
TG = G

(
R [x] /x2), that can further be endowed with the structure of a module

over R, and we have seen that T ∗G ∼= M (warning: this doesn’t that we get an
isomorphism from G to Spf (R [[M ]])).

Consider the special caseM = R {x}, we get Spf (R [[x]]) (A) = colim hom (R [x] /xn, A) =
homcont (R [[x]] , A) =

√
A.

Definition 1. A formal group G together with an isomorphism of the cotangent
space T ∗G ∼−→ R {x} is called a (1-dimensional commutative) formal group
law and the choice of the isomorphism is called a coordinate. Naturally, an
isomorphism of formal group laws is required to commute with the coordinate,
usually called a strict-isomorphism. The groupoid of formal group laws over R
together with strict-isomorphisms is denoted by FGL (R).

Example 2. The additive formal group law is defined by Ĝa (A) =
√
A with

the usual addition, x, y 7→ x+ y.

Example 3. The multiplicative formal group law is defined by Ĝm (A) =
√
A

with the operation given by the identification of
√
A with 1 +

√
A and using the

multiplicative structure, x, y 7→ (1 + x) (1 + y)− 1 = x+ y + xy.

Let’s recall some results from the previous time:

Theorem 4 (/definition). Let G be a formal group law over R,

1. if R is a Q-algebra, G ∼= Ĝa (G [p] is 1 = p0 dimensional), and we define
ht (G) = 0,

2. if R is a field of characteristic p, either

(a) the p-torsion G [p] is an algebra of dimension pn for some 1 ≤ n <∞
and we define ht (G) = n,

(b) or G ∼= Ĝa (G [p] is infinite dimensional), and we define ht (G) =∞.

3. for an arbitrary ring, we define ht (G) : SpecR → Z≥0 by ht (G) (p) =
ht
(
G |κ(p)

)
, where κ (p) = Rp/p is the residue field.

2 Lubin-Tate Deformation Theory

Let’s fix a perfect field of characteristic p, k (to be concrete think of Fp or Fp),
and a formal group law over it Γ of some finite height n = ht (Γ) < ∞. One
may wonder, which formal group laws are “close” to Γ, in some sense. The
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formalization of this is given by the Lubin-Tate deformation theory. This is
a moduli problem given by a functor Def : CompRings → Grpd. Let (R,m)
be a complete local ring, and denote by π : R → R/m the projection. Again,
promoting the view that we should take Spec on all fields and rings, this data
should be though of as a thickening of the point SpecR/m.

Then, Def (R,m) is abstractly given by the pullback:

Def (R,m) //

��

FGL (R)

G7→π∗G
��

{i : k → R/m}i 7→i
∗Γ // FGL (R/m)

where the bottom left is the discrete groupoid of homomorphisms of fields.

Concretely, a deformation of Γ to (R,m) is (G, i, τ), where G is a formal group
law over R, i : k → R/m, and τ : i∗Γ ∼−→ π∗G is a strict-isomorphism. Concisely,
this is a lift of Γ, base changed to R/m. We will always denote this by:

π∗G

i∗Γ

τ

OO

An isomorphism of such triples (G1, i1, τ1) → (G2, i2, τ2) is usually called ?-
isomorphism, it exists only when i1 = i = i2, and then it is a strict-isomorphism
g : G1 → G2 compatible with τ1, τ2 in the sense that the following diagram
commutes:

π∗G1
π∗g // π∗G2

i∗Γ id //

τ1

OO

i∗Γ

τ2

OO

We note that i∗Γ has the same height as Γ, and taking a lift from R/m to R can
only decrease the height so G satisfies 0 ≤ ht (G) (−) ≤ n (this will be clearer
in the classical point of view later).

Theorem 5. The functor Def : CompRings→ Grpd,

1. lands in discrete groupoids (i.e. there are either 0 or 1 morphisms between
objects, that is, sets),

2. is corepresented, that is there is a complete local ring (RU ,mU ) such that
for each (R,m) we have hom ((RU ,mU ) , (R,m)) ∼−→ Def (R,m).

To be more specific, the ring RU can be chosen to be Wk [[u1, . . . , un−1]]. Here
Wk is the Witt ring of k, which is a complete local ring with maximal ideal
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(p) and residue field k, and is some sort of a formal neighborhood of k. As an
example, for k = Fp we get Wk = Zp, and indeed Zp/p = Fp. It then makes
sense to denote u0 = p, and the maximal ideal of RU is mU = (u0, u1, . . . , un−1).

Further (by taking id : RU → RU ), there is a universal deformation (GU , id, τU ),
i.e. there is a formal group law GU with τU : Γ ∼−→ π∗GU , such that for any com-
plete local ring the map hom ((RU ,mU ) , (R,m))→ Def (R,m) given by sending

ϕ : RU → R to
(
ϕ∗GU , ϕ/m, (ϕ/m)∗ Γ (ϕ/m)∗τU−−−−−−→ (ϕ/m)∗ π∗GU = π∗ϕ∗GU

)
is a bijection (the target is a discrete groupoid, so we mean equivalence of
groupoids).

π∗GU // π∗ϕ∗GU = (ϕ/m)∗ π∗GU

Γ

τU

OO

// (ϕ/m)∗ Γ

(ϕ/m)∗τU

OO

Recall that the height of any deformation, and in particular that of GU , satisfies
0 ≤ ht (G) (−) ≤ n. The theorem actually tells us that GU attains all those
heights, i.e. it interpolates between 0 and n. For each t we have the prime ideal
pt = (u0, u1, . . . , ut−1). The theorem shows that ht (GU ) (pt) = t. In particular,
over the generic fiberWk

[
p−1, u±1

1 , . . . , u±1
n−1
]
the height is 0, and over the fiber

k the height is (of course) n.
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u0 = p

u1

u2ht = 0
ht = 1

ht = 2

ht = 3

Figure 1: Illustration of ht (GU ) : SpecRU → Z≥0 for the case n = 3. The
interpretation of the axes is that ui = 0 at the 0 of the axis, and ui is invertible
everywhere else.

3 Classical Point of View

Let’s reinterpret this classically. First of all, recall that given a formal group
law G over R, we can choose an isomorphism G ∼−→ Spf (R [[x]]) (although it
is not unique). The data of the multiplication is (by Yoneda) equivalent to a
map Spf (R [[y]]) × Spf (R [[z]]) → Spf (R [[x]]), equivalently a map R [[x]] →
R [[y]] ⊗̂R [[z]] = R [[y, z]], which is determined by the image of x, which we
denote by FG (y, z) or y +G z. This “addition” operation has 0 as a neutral
element, it is associative and commutative, and any such formal power series
R [[y, z]] determines a formal group law. A strict-isomorphism g : G1 → G2 is
given by a power seriesHg (x), which is on the opposite direction on the algebraic
side, so it satisfies Hg (y) +G1 Hg (z) = Hg (y +G2 z), and Hg (x) = x mod x2

(because it commutes with the coordinate). Furthermore α : R → S sends FG
to α∗FG = Fα∗G by applying α to the coefficients in the formal power series.
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Well, then the groupoid FGL (R) of formal group laws over R is equivalent to
the groupoid of such power series F (y, z) and such H (x) as morphisms. So
we can define Def (R,m) in these terms. Actually we can rigidify as follows: a
deformation of FΓ ∈ k [[y, z]] to (R,m) is a pair (F, i) such that i∗FΓ = π∗F
(rather than isomorphic), i.e. F = i∗FΓ mod m. A ?-isomorphism (F1, i1) →
(F2, i2) again exists only when i1 = i = i2, and it is a strict-isomorphism
H ∈ R [[x]], such that H (x) = x mod m (i.e. the identity when base changed
using π∗).

Example 6. By definition, for the additive formal group law FĜa
(x, y) = x+y,

and for the multiplicative formal group law FĜm
(x, y) = (1 + x) (1 + y) − 1 =

x+ y + xy.

Recall that the height of a formal group law was defined to be n where the
dimension of G [p] is pn. This can also be seen as follows. Given the choice of
the formal power series as above, we can form the p-series [p]G (x) = x+G· · ·+Gx.
Since to first order x +G y = x + y, to first order [p]G (x) = px. So over a Q-
algebra the coefficient of x = xp

0 is p which is invertible, and the height is 0.
Over a field (actually ring) of characteristic p, the p-series is either all 0 so the
height is ∞, or, as it turns out, it is power series in xp

i with non-vanishing
coefficient for xpi for some i, i.e. it is of the form [p]G (x) = vix

pi + · · · with
vi 6= 0. This i is the height.

Example 7. For the additive formal group law, we get [p]Ĝa
(x) = px. There-

fore over a Q-algebra we easily see that the height is 0. Over a field of charac-
teristic p, we see that [p]Ĝa

= 0 so the height is ∞.

Example 8. For the multiplicative formal group law, we get [p]Ĝm
(x) =

(1 + x)p − 1. Again, over a Q-algebra this starts with px. Over a field of
characteristic p, we see that [p]Ĝa

= (1 + x)p−1 = 1+xp−1 = xp so the height
is 1.

In our case we start with a formal group law Γ of height 1 ≤ n < ∞ over k,
so the p-series is of the form [p]Γ = axp

n + · · · . And we wish to construct a
corresponding formal group law GU over RU = Wk [[u1, . . . , un−1]]. We shall
give a sketch of the construction following Lurie [2, lectures 13, 21], who takes
a different approach then what is usually done.

Recall that there is a universal formal group law Funiv over the Lazard ring
L. This is given by taking L = Z [aij ] / ∼ and Funiv(y, z) =

∑
aijy

izj , where
∼ are all the relations dictated by the axioms of a formal group law. Then
a homomorphism L → R is the same data as a formal group law on R by
ϕ 7→ ϕ∗Funiv. Lazard theorem states that L ∼= Z [t1, t2, . . . ] (non-canonically).
Now, assuming R is p-local, i.e. a Z(p)-algebra, maps L → R are the same as
maps L(p) → R. We can write the p-series of the universal formal group law And
it turns out that after the p-localization, [p]Funiv

(x), and denote the coefficient
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vi of xp
i (which is polynomial in the tj). It turns out that after p-localization

we can choose the tpi−1 = vi in L(p) ∼= Z(p) [t1, t2, . . . ].

Since Γ over k has height n, it is given by a map L(p) → k where vi 7→ 0 for
i < n and vn 7→ a (since [p]Γ = axp

n + · · · ). Now choose any lift L(p) →
Wk [[u1, . . . , un−1]] such that vi 7→ ui for i < n (automatically v0 = p = u0)
and vn 7→ a some lift of a. The claim is that any such choice corresponds to a
formal group law which gives a universal deformation, we will not prove this.

However, we can easily verify that ht (GU ) (pt) = t for pt = (u0, u1, . . . , ut−1).
Indeed, for t = 0 we have p0 = 0, we get a Q-algebra (since we invert u0 = p),
and the height is 0. For 1 ≤ t ≤ n, the field κ (pt) is of characteristic p since we
take the quotient by u0 = p. So the p-series is a power series in xp

i for some
i. We fixed vi 7→ ui, so the coefficient of xpi is ui, which is 0 for i < t, and
non-zero for i = t, i.e. it is utxp

t + · · · + un−1x
p(n−1) + · · · + axp

n + · · · , so we
get ht (GU ) (pt) = t.

Example 9. Take the multiplicative formal group law Ĝm over Fp. We saw
that it is of height n = ht

(
Ĝm
)

= 1. Therefore RU = WFp = Zp. In this
case GU = Ĝm over Zp is a universal deformation (we have essentially seen the
height computations before).

To wrap up, given a formal group law Γ of height n over k, there is a universal
deformation GU over RU , that has height between 0 and n (we recall that these
were all possible heights for a deformation). The meaning of this is that the
infinitesimal neighborhood of a formal group law of height n, contains heights
0 to n, and the height there is generically 0 (and most specially n).

4 Functoriality

The category of formal group laws (in characteristic p, without reference to a
ring), is denoted by FGLp. Its objects are a pair (k,Γ) of a perfect field of
characteristic p and a formal group law Γ over it. Again, we should think of
Spec k rather than k, then a morphism (k1,Γ1)→ (k2,Γ2) is a homomorphism
ϕ : k2 → k1 and a strict-isomorphism g : ϕ∗Γ2 → Γ1, in particular we note that
a morphism exists only if Γ1 and Γ2 have the same height (as ϕ∗ doesn’t change
the height). Similarly we denote by FGL0 the category of pairs ((R,m) ,G)
where (R/m, π∗G) ∈ FGLp, and morphisms are similarly ϕ : R2 → R1 and a
strict-isomorphism g : ϕ∗G2 → G1.

What we have seen up until now is an assignment FGLp → FGL0, given by
(k,Γ) 7→ (RU ,GU ), which corepresents the moduli problem. We claim that this
assignment is in fact functorial (actually we claim that the moduli problem itself
is functorial, and this will follow).
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Say we have a morphism (k1,Γ1)→ (k2,Γ2), we build a natural transformation
between the moduli problems Defk1,Γ1 ⇒ Defk2,Γ2 . Let (R,m) be a complete lo-
cal ring. For a deformation (G, i, τ) of Γ to R, i.e. i : k1 → R/m and τ : i∗Γ1

∼−→
π∗G, we can construct the deformation

(
G, k2

ϕ−→ k1
i−→ R/m, i∗ϕ∗Γ2

i∗g−−→ i∗Γ1
τ−→ π∗G

)
.

Therefore we have a map Defk1,Γ1 (R,m)→ Defk2,Γ2 (R,m), and this assembles
into a natural transformation Defk1,Γ1 ⇒ Defk2,Γ2 .

π∗G

i∗ϕ∗Γ2
i∗g // i∗Γ1

τ

OO

The functors are corepresented, so this is a (co-)Yoneda situation. Let’s un-
ravel what we actually get by taking the element corresponding to the identity
on the first, i.e. the universal deformation

(
G1
U , id, τ1

U

)
∈ Defk1,Γ1

(
R1
U

)
. By

definition, it is mapped to
(
G1
U , ϕ, τ

1
U ◦ g

)
∈ Defk2,Γ2

(
R1
U

)
. But this functor is

corepresented as well, this time by R2
U , so we have some ϕ : R2

U → R1
U , and a

(unique) ?-isomorphism from
(
ϕ∗G2

U , ϕ/m, (ϕ/m)∗ τ2
U

)
to
(
G1
U , ϕ, τ

1
U ◦ g

)
. This

means that ϕ/m = ϕ, i.e. ϕ is a lift of ϕ which justifies the notation, and we
have a strict-isomorphism g : ϕ∗G2

U → G1
U such that the following diagram

commutes:
π∗ϕ∗G2

U

π∗g // π∗G1
U

(ϕ/m)∗ Γ2
id //

(ϕ/m)∗τ2
U

OO

ϕ∗Γ2
g // Γ1

τ1
U

OO

i.e. g is a lift of g which again justifies the notation. To conclude, from ϕ :
k2 → k1 and g : ϕ∗Γ2

∼−→ Γ1 we constructed (uniquely) lifts ϕ : R2
U → R1

U

and g : ϕ∗G2
U → G1

U . This turns the construction FGLp → FGL0 given by
(k,Γ) 7→ (RU ,GU ) into a functor.

5 Morava Stabilizer Group

Fixing (k,Γ) ∈ FGLp, we get by the functoriality a map Aut (k,Γ)→ Aut (RU ,GU ),
i.e. the group Aut (k,Γ) the group acts on RU = Wk [[u1, . . . , un−1]], and twists
GU accordingly. This group is called the n-th Extended Morava Stabilizer Group,
and usually denoted (unfortunately) by Gn = Aut (k,Γ). It has a subgroup of
those maps that act only on Γ (i.e. ϕ = id), which is called the n-th Morava
Stabilizer Group and is usually denoted by Sn. The group Gn splits into a
semi-direct product Gn = Sn o Gal (k : Fp).

We recall that over an algebraically closed field, such as Fp, there is a unique
formal group law of height n up to strict-isomorphism, so in this case Gn and

8



Sn are independent of Γ, and usually people refer to these groups. Moreover, it
turns out that past Fpn , the automorphisms of a formal group law of height n
don’t change, so one can take k = Fpn instead.
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