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1 Motivation

Let k be an algebraically closed field. We can look at Gm = Spec
(
k
[
x, x−1

]) ∼= k∗, where the elements
are ma = (x− a) for a ∈ k∗, it has the structure of an algebraic group, given by a map Gm × Gm →
Gm, (ma,mb) 7→ mab. Under the (contravariant) spectrum functor, it comes from k

[
z, z−1

]
→ k

[
x, x−1

]
⊗

k
[
y, y−1

]
= k

[
x, x−1, y, y−1

]
, z 7→ xy.

In much the same way that the Lie algebra corresponding to a Lie group, studies a neighborhood of the identity,
up to first order, we will study functions near the identity up to any order. In our case, the identity is m1.
Thus, to study functions on Gm up to n-th order, we should look at k

[
x, x−1

]
/mn

1 , and to study them up to
any order, we should take the limit, i.e. the completion by this ideal.

To compute the completion, it is convenient to change variables s = x− 1, so that k
[
x, x−1

]
= k

[
s, (s+ 1)

−1
]

and m1 = (s), thus completion is k [[s]]. Also the multiplication after change of variables and completion
becomes k [[t]] → k [[s, u]] , t+1 7→ (s+ 1) (u+ 1) which is the same as t 7→ su+ s+u. So, near the identity, the
multiplication is specified by an element of k [[s, u]] which is su + s + u, called the multiplicative formal group
law. Note that 0 is a neutral element, and that the law is associative and commutative (since the operation
satisfied these properties to begin with.)

In what follows, we axiomatize the resulting structure, similarly to the axiomatization of Lie algebras.

2 Introduction

Definition. Let R be a commutative ring with unit. A (commutative one-dimensional) formal group law over
R is an element F (x, y) ∈ R [[x, y]], such that:

1. F (x, 0) = x = F (0, x)

2. F (F (x, y) , z) = F (x, F (y, x)) (associativity)

3. F (x, y) = F (y, x) (commutativity)

We denote the set of formal group laws over a ring R by FGL (R).

Definition. Given an homomorphism φ : R → S, and F ∈ FGL (R) given by, F (x, y) =
∑
aijx

iyj , we define
φ∗ (F ) (x, y) =

∑
φ (aij)x

iyj . (This makes FGL (•) : Ring → Set into a functor.)

Example. The additive formal group law, Fa (x, y) = x+ y.
Example. The multiplicative formal group law, Fm (x, y) = x + y + uxy for some unit u ∈ R, and specifically
Fm (x, y) = x+ y + xy.

Lemma. p (x) ∈ R [[x]] is (multiplicatively) invertible if and only if p (0) ∈ R is invertible.
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Proof. Let p (x) =
∑
anx

n, and assume q (x) =
∑
bnx

n ∈ R [[x]] is an inverse to p, i.e. pq = 1. By comparing
coefficients it follows that a0b0 = 1 (so the first part follows), and

∑n
k=0 akbn−k = 0. If a0 is invertible then we

can find a suitable q, by defining b0 = a−1
0 , and bn = −a−1

0 (
∑n

k=1 akbn−k) (so the second part follows).

Lemma. There exists an element ι (x) ∈ R [[x]] called the inverse such that F (x, ι (x)) = 0 = F (ι (x) , x).

Definition. An homomorphism from F to G, two formal group laws over R, is a f ∈ R [[x]], such that:

1. f (0) = 0

2. f (F (x, y)) = G (f (x) , f (y))

Remark. The definition of an homomorphism between formal group laws, turns the collection of formal group
laws over a ring into a category, Also, given a morphism of rings φ, the map φ∗ is actually a functor between
the corresponding categories.

Lemma. f : F → G is (compositionally) invertible (i.e. an isomorphism) if and only if f ′ (0) is invertible.

Proof. It is easy to see the first implication. If f ′ (0) = 0, we can show explicitly that there exists a unique g
such that g (f (x)) = x, and g′ (0) = (f ′ (0))

−1. From the very same claim, it follows that there exists an h such
that h (g (x)) = x, it follows that h (x) = h (g (f (x))) = f (x).

Definition. f : F → G is a strict isomorphism if f ′ (0) = 1.

Example. Over a Q-algebra (where we can divide by n > 0), the multiplicative formal group law is strictly
isomorphic to the additive formal group law, by f (x) = u−1 log (1 + ux) =

∑∞
n=1

(−u)n−1xn

n :

f (Fm (x, y)) = u−1 log (1 + uFm (x, y))

= u−1 log
(
1 + ux+ uy + u2xy

)
= u−1 log (1 + ux) (1 + uy)

= u−1 log (1 + ux) + log (1 + uy)

= Fa (f (x) , f (y))

(Note that we don’t need the u−1 to get an isomorphism, but we do need it to get a strict isomorphism.)

Definition. A strict isomorphism from F to Fa is called a logarithm.

Lemma. Let f ∈ R [[x]] be such that f (0) = 0, f ′ (0) = 1 (i.e. f (x) = x + · · · ), then there is a unique formal
group law Ff over R whose logarithm is f .

Proof. The condition of being a logarithm means that f (Ff (x, y)) = f (x) + f (y), or equivalently Ff (x, y) =
f−1 (f (x) + f (y)). The uniqueness is thus trivial, and being a formal group law is also easy to check.

3 Characteristic 0

Theorem. A formal group law over a Q-algebra has a logarithm.

Proof. Let F be such a formal group law, and denote F2 = ∂F
∂y . Since F (x, y) = x + y + · · · , we know that

F2 (0, 0) = 1, thus F2 (t, 0) is (multiplicatively) invertible. Since each 0 ̸= n ∈ Z is invertible, we can define the
following:

f (x) =

∫ x

0

dt
F2 (t, 0)

We claim that it is a logarithm. We know that f (0) = 0 and f ′ (0) = 1
F2(0,0)

= 1. It is sufficient to prove that
w (x, y) = f (F (x, y))−f (x)−f (y) =

∑
cijx

iyj vanishes. First, note that w (x, 0) = f (F (x, 0))−f (x)−f (0) =
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f (x)− f (x)− 0 = 0 and it follows that ci0 = 0. If we prove that

0 =
∂w

∂y

= f ′ (F (x, y))F2 (x, y)− f ′ (y)

=
1

F2 (F (x, y) , 0)
F2 (x, y)−

1

F2 (y, 0)

it follows that jcij = 0, and since each 0 ̸= j ∈ Z is invertible, cij = 0, j > 0, which finishes the proof. Indeed,
by associativity, F (F (x, y) , z) = F (x, F (y, z)), differentiating w.r.t. z at z = 0 we get, F2 (F (x, y) , 0) =
F2 (x, y)F2 (y, 0) and the result follows.

4 Characteristic p

Remark. The theorem for characteristic 0 is not true over arbitrary rings.

To see this, we define a notion, that will lead us to the concept of height. Let F ∈ FGL (R). We define
[n]F (x) ∈ R [[x]], called the n-series of F , recursively:

[0]F (x) = 0 [n+ 1]F (x) = F (x, [n]F (x))

Clearly, for f : F → G we get f ([n]F (x)) = [n]G (f (x)).

For Fa we have [n]Fa
(x) = nx, and by induction for Fm we have [n]Fa

(x) = (1 + x)
n − 1. Consider them over

a field of characteristic p, and assume that f : Fm → Fa is an homomorphism then

0 = [p]Fa
(f (x)) = f

(
[p]Fm

(x)
)
= f ((1 + x)

p − 1) = f (xp)

which means that f is not invertible, thus Fm and Fa are not isomorphic.

Lemma. For all n, [n]F is an endomorphism of F .

Proof. This amounts to understanding that [n]F (x) is like nx. It is trivial by definition that [n] (0) = 0. The
addition by induction. For n = 0 trivial. Now:

[n] (F (x, y)) = F (F (x, y) , [n− 1] (F (x, y)))

= F (F (y, x) , F ([n− 1] (x) , [n− 1] (y)))

= F (y, F (x, F ([n− 1] (x) , [n− 1] (y))))

= F (y, F ([n] (x) , [n− 1] (y)))

= F (y, F ([n− 1] (y) , [n] (x)))

= F ([n] (y) , [n] (x))

= F ([n] (x) , [n] (y))

In what follows in this section, R is an Fp-algebra.

Lemma. Let F,G ∈ FGL (R), and f : F → G non-trivial. Then f (x) = g
(
xp

n) for some n and g ∈ R [[x]] with
g′ (0) ̸= 0, and in particular the leading term of f is axpn .

Proof. If f ′ (0) ̸= 0, we are done. Otherwise, we will find a formal group law F̃ , and f̃ : F̃ → G, such that
f (x) = f̃ (xp). Since f is non-trivial, and the least non-zero degree is lowered by this process, this process must
terminate after a finite amount of stages. So suppose f ′ (0) = 0.

First we claim that f ′ (x) = 0. Deriving f (F (x, y)) = G (f (x) , f (y)) by y and setting y = 0, we get
f ′ (F (x, 0))F2 (x, 0) = G2 (f (x) , f (0)) f

′ (0) remembering that F (x, 0) = x, F2 (x, 0) = 1, f ′ (0) = 0, we con-
clude that f ′ (x) = 0. Now, write f (x) =

∑
anx

n, from f ′ (x) = 0 it follows that nan = 0 for all n, thus an = 0
for all p - n. So we can define f̃ , by f (x) = f̃ (xp).
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Denote by φ : R→ R the Frobenius endomorphism φ (x) = xp. Define F̃ = φ∗ (F ). It follows that

f̃
(
F̃ (xp, yp)

)
= f̃ (F (x, y)

p
) = f (F (x, y)) = G (f (x) , f (y)) = G

(
f̃ (xp) , f̃ (yp)

)
thus f̃

(
F̃ (x, y)

)
= G

(
f̃ (x) , f̃ (y)

)
(since these are just formal power series, so just rename the variables), and

it follows that f̃ : F̃ → G is the desired homomorphism.

Definition. The height of F ∈ FGL (R) is defined as follows: if [p]F (x) = 0, the height is ∞, otherwise it is
the unique n ∈ N such that [p]F (x) = g

(
xp

n) with g′ (0) ̸= 0.

Lemma. The height is an isomorphism invariant.

Proof. Let f : F → G be an isomorphism. We’ve seen that in that case f ([n]F (x)) = [n]G (f (x)). Since f is an
isomorphism, f ′ (0) is a unit, the least non-zero degree is conserved and the result follows.

Theorem. For each 1 ≤ n ≤ ∞ there exists a formal group law Fn of height n.

Theorem. Over an algebraically closed field, there is a unique formal group law of each height 1 ≤ n ≤ ∞.

5 The Lazard Ring

Theorem. There is a ring L, called the Lazard ring, and a formal group law over it Funiv, called the universal
formal group law, such that for every ring R the map

homRing (L,R) → FGL (R) φ 7→ φ∗ (Funiv)

is one-to-one and onto. That is, the functor FGL : Ring → Set is corepresentable by L.

Proof. Look at the ring L̃ = Z [cij ], and F̃univ (x, y) =
∑
cijx

iyj ∈ L̃ [[x, y]]. There are various relations obtained
from the definition of a formal group law, e.g. c0j = 0 = ci0. Denote by I the ideal generated by these relations,
and define L = L̃/I, and Funiv (x, y) =

∑
(cij + I)xiyj ∈ L [[x, y]], which satisfies the definition of a formal group

law over L by construction. The map being one-to-one is trivial. Given a formal group law F (x, y) =
∑
aijx

iyj ,
we can define φ̃ : L̃ → R by φ̃ (cij) = aij . It is clear that φ̃ is 0 on I (since the coefficients F satisfy the
relations), so that it factors to a map φ : L→ R, and clearly φ∗ (Funiv) = F , therefore it is onto.

We can define grading on L, by first defining a grading on L̃. Assume that |x| , |y| = d, and require that
|Funiv (x, y)| = d, then d = deg (cij) + di + dj. It is convenient (specifically for algebraic topology) to choose
d = 2, thus |cij | = 2 (i+ j − 1). It is also true that all relations in the definition of a formal group law compare
values of the same degree, thus the grading descends to L. (Also note that c00 = 0 so it is non-negatively
graded.)

Theorem (Lazard). L ∼= Z [t1, t2, . . . ] where |ti| = 2i.

Look at the ring Z [b1, b2, . . . ] where |bi| = 2i, and define f (x) = x + b1x
2 + b2x

3 + . . . . We showed before
that Ff = f−1 (f (x) + f (y)) defines a formal group. In the same way that L corepresents formal group laws,
Z [b1, b2, . . . ] corepresents formal group laws that have a logarithm. Also note that there is a coclassifying map
from L for Ff , denoted by ϕ : L→ Z [b1, b2, . . . ] (compatible with the grading).

Lemma. ϕQ : L⊗Q → Q [b1, b2, . . . ] is an isomorphism, and in particular surjective.

Proof. This is precisely the statement that over a Q-algebra every formal group law has a logarithm.

Let I, J be the ideals consisting of elements of positive degree in L,Z [b1, b2, . . . ] respectively. It is clear that
J/J2 is a free abelian group with generators bi so that

(
J/J2

)
2n

∼= Z (generated by bn).

Lemma. ϕ induces an injection
(
I/I2

)
2n

→
(
J/J2

)
2n

, and the image is pZ if n+ 1 = pf , and Z otherwise.
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In particular it follows that
(
I/I2

)
2n

∼= Z. Choose generators, and lift them to homogeneous tn ∈ I2n = L2n.
This naturally defines a map θ : Z [t1, t2, . . . ] → L.

Lemma. θ is surjective.

Proof. Easy induction on the degrees. Note that we have relation c01, c10 = 1, so the base case follows. Elements
of

(
I2
)
2n

are generated by products of elements of degrees 1 ≤ d < 2n, which are in imθ by induction, thus(
I2
)
2n

⊂ imθ. Since ti ∈ imθ is a generator of
(
I/I2

)
2n

, it follows that L2n = I2n ⊂ imθ.

Lemma. ψ = ϕθ : Z [t1, t2, . . . ] → L→ Z [b1, b2, . . . ] is injective, and in particular θ is injective.

Proof. Since they are torsion-free, it is sufficient to prove that ψQ = ϕQθQ : Q [t1, t2, . . . ] → L⊗Q → Q [b1, b2, . . . ]
is an isomorphism. θQ is surjective since θ is, ϕQ was shown to be surjective, thus the composition ψQ is surjective.
In every degree, the rings are finite dimensional Q-vector spaces, with surjective linear map between them, so it
follows that it is an isomorphism in every degree, and thus globally.

Proof of Lazard’s theorem. The map θ : Z [t1, t2, . . . ] → L was shown to be injective and surjective.
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