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1 Introduction

Our goal is to define the fundamental group in an algebraic situation. A defini-
tion using paths, homotopies and so on, will be problematic, as algebraic objects
are very rigid, as opposed to topological objects. Therefore, we need another
approach. The idea is to define something geometric in the topological situation,
from which we can reconstruct the (usual) fundamental group, and then mimic
the geometric construction in algebraic geometry and then “reconstruct” the
fundamental group the same way. Specifically, denoting G = π1 (X,x) (usual
fundamental group), GSet and Repk (G) have geometric interpretations, but we
will get to this later.

We will first review the reconstruction part, and once we are done with this we
will move on to the definition of the fundamental group.

2 Baby Case

Let G be a (discrete) group. Look at the category of G-sets, GSet. There is a
forgetful functor ω : GSet→ Set.

There is a homomorphism G → Aut (ω) given by g 7→ ηg where ηg : ω ⇒ ω
is the natural transformation given by ηg,X (x) = g.x, and since functions are
equivariant this is clearly a natural transformation. We wish to show that this
homomorphism is actually an isomorphism.

First of all, we note that ω is corepresentable, namely ω (X) ∼= homGSet (G,X),
where the natural isomorphism is given by x 7→ (g 7→ g.x). The result now
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follows by the (co-)Yoneda lemma for GSet:

Aut (ω) for now just End= Nat (ω, ω)
= Nat (homGSet (G,−) ,homGSet (G,−))
= homGSet (G,G)
= G

This means that the data of ω : GSet→ Set is enough to recover G.

3 Hints Towards A Generalization

We will later have to deal with a more general case, so let’s try and extract as
much as we can from the above.
First of all, let (C,⊗, 1) be a symmetric monoidal category, denote by k =
End (1) the group of endomorphisms of the unit. By an Eckmann-Hilton ar-
gument, k is actually an abelian group. Furthermore, it acts on every object
naturally, that is each a ∈ k gives a natural transformation a : idC ⇒ idC: given
1 a→ 1, and an object X ∈ C we have the map X ∼−→ X ⊗ 1 id⊗a−−−→ X ⊗ 1 ∼−→ X.
Let us return to our case. The categories GSet and Set are closed symmetric
monoidal. The SM structure is the product, and the unit is the trivial G-set
∗ (and ∗ for Set). There is internal hom [X,Y ] which has the underlying set
homGSet (X,Y ) with the action given by (g.f) (x) = g.

(
f

(
g−1.x

))
(and just

hom (X,Y ) for Set).
Furthermore, in our case, k = End (1) = ∗ in both categories, so we have a
trivial action on both categories. It is also natural to identify Set with kSet.
We note that ω : GSet→ kSet satisfies the following: it is symmetric monoidal,
faithful, preserves finite limits and colimits, and it commutes with the k-action.
Note that the automorphisms Aut (ω) were all symmetric monoidal, that is
ηX×Y = ηX × ηY and η∗ = id∗. And indeed it was natural to ask only for
symmetric monoidal automorphisms, Aut⊗ (ω).
We will later see that this was an F1 shadow of a statement that works over
other fields.

4 Affine Group Schemes and Hopf Algebras

We will take a short interlude to recall some things about group schemes. Let
k be some field.

Definition 1. A group scheme G is a group object in the category of schemes
Schk. An affine group scheme is a group scheme whose underlying scheme is
affine.

2



If we have time: Let’s recall two ways to think about this definition. The easiest
way is to consider the functor of points G : CAlgk → Set, the data of a group
scheme is precisely a lift to a functor G : CAlg → Grp. The other way is as
follows, assume that G = SpecA, i.e. it is affine. We have a multiplication
G×G→ G, identity Spec k = ∗ → G and an inverse G→ G. Since it is affine,
this is the same data as a comultiplication ∆ : A→ A⊗A, coidentity ε : A→ k,
and coinverse S : A→ A, such that it is coassociative

A
∆ //

∆
��

A⊗A

∆⊗id
��

A⊗A id⊗∆// A⊗A⊗A

counital A ∆−→ A ⊗ A
id⊗ε−−−→ A ⊗ k

∼−→ A = A
id−→ A, and has the coinverse

A
∆−→ A ⊗ A

id⊗S−−−→ A ⊗ A → A = A
ε−→ k → A. This exactly equips the

k-algebra A with the structure of an (associative commutative coassociative)
Hopf algebra.

Definition 2. An affine group scheme G = SpecA is algebraic if A is a finitely
generated k-algebra. G is pro-algebraic if A is a colimit of finitely generated
k-algebras.

5 A Generalization

Let k be a field, and let G be an affine group scheme over k. The category
of finite-dimensional G-representations over k is denote by Repk (G). A de-
scription of the objects in the category is pairs (V, ρ), where V ∈ Vectk is a
finite-dimensional k-vector space, together with an action of G, i.e. a morphism
of group schemes ρ : G→ GLV .

Again, we have a forgetful functor ω : Repk (G)→ Vectk, which just remembers
the underlying k-vector space.

We note that here again, Repk (G) and Vectk are closed symmetric monoidal.
The SM structure is the tensor product, and unit is the trivial G-representation
k. Unlike last time, the categories are abelian, so the hom’s are not merely sets
but abelian groups. This gives k = End (1) also the additive structure, which
recovers the field. Further, the categories are equipped with a k = End (1)-
action, which means that the hom’s are in fact k-vector space. One can also
define the G-action, which shows that it is indeed closed. Moreover, every object
is dualizable, and the dual is given by (−)∗ = [−, 1].

Now, our functor ω is symmetric monoidal, faithful, preserves finite limits and
colimits, which in this context is usually called exact, and commutes with the
k-action, which in this context is usually called k-linear.
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This is very similar to the case GSet → kSet from before, so there is a hope
for recovering G from ω : Repk (G) → Vectk. For this we wish to construct a
k-group scheme Aut⊗ (ω).
If we have time: The corresponding usual categorical notion is the automor-
phism group of SM natural transformations Aut⊗ (ω). Concretely, for each
(V, ρ) ∈ Repk (G) we need ηV,ρ : V → V such that, first it is a natural transfor-
mation of ω, i.e. for T : (V, ρ)→ (W, τ) we have:

V
ω(T ) //

ηV,ρ

��

W

ηW,τ

��
V

ω(T ) // W

and second, it is SM, that is η(V,ρ)⊗(W,τ) = η(V,ρ) ⊗ η(W,τ)and ηk = idk. Such
element η ∈ Aut⊗ (ω) will give an element in Aut⊗ (ω) (R) for each k-algebra R
as follows. The map ηV,ρ : V → V gives a map ηV,ρ ⊗ idR : V ⊗k R→ V ⊗k R,
and it commutes with every map T ⊗ idR coming from T : (V, ρ) → (W, τ) as
above.
We turn this into the definition of Aut⊗ (ω) (R), namely, it is the group of
{ηV,ρ : V ⊗k R→ V ⊗k R}V,ρ, that commute with every T ⊗ idR. Clearly, for
every g ∈ G (R), we get such a map by ηV,ρ = ρ (g). This gives a morphism of
group schemes G→ Aut⊗ (ω).

Theorem 3. The morphism G→ Aut⊗ (ω) is an isomorphism of group schemes.

6 Neutral Tannakian Categories

As we have seen, given the category Repk (G) and the functor ω : Repk (G) →
Vectk, we can recover G. Now, assuming we have some category C, we wish to
“recover G” from it. That is, we wish to find a group scheme G and admit C as
Repk (G). For this to happen, we certainly need C to have all the properties and
structure that Repk (G) has, and all of the properties and structure described
before are in fact sufficient, that is we have the following theorem:

Theorem 4 (Tannakian Reconstruction). Let (C, 1,⊗) be a closed symmetric
monoidal abelian category such that every object is dualizable. Denote k =
End (1). Let ω : C → Vectk be a symmetric monoidal faithful exact k-linear
functor. Then

1. there is an affine group scheme G = Aut⊗ (ω),

2. ω factors to an equivalence C→ Repk (G).

Definition 5. A category satisfying the conditions above, and that admits ω
satisfying the conditions above, is called a neutral Tannakian category. Any
such ω is called a fiber functor.
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We don’t have time to prove this theorem, but let’s give a sketch. First, we note
that for an affine group scheme G = SpecB, a G-representation is the same
data as a B-comodule, i.e. Repk (G) = ComodB , therefore the theorem can
be described in these terms, and we need to produce B and the corresponding
equivalence C→ ComodB .

The first part is to construct a k-coalgebra. To do this, we don’t use the sym-
metric monoidal structure. For each X ∈ C we consider the full subcategory of
subquotients 〈X〉 ⊆ C, and the restriction ω |〈X〉: 〈X〉 → Vectk. The k-algebra
AX = End

(
ω |〈X〉

)
acts on ω |〈X〉 (Y ) for Y ∈ 〈X〉, and so the functor actually

factors as ω |〈X〉: 〈X〉 → ModAX = ComodBX where BX = A∗X . We then
define B = colimBX , and the functor ω : C → Vectk factors as an equivalence
ω : C→ ComodB .

For the second part, we assume that C is symmetric monoidal, and the functor
is symmetric monoidal. Then, via the equivalence ω : C → ComodB , we get
a symmetric monoidal structure on ComodB , which gives B the structure of
an associative commutative k-algebra. Therefore, we can define G = SpecB,
and the coalgebra structure gives it the structure of a monoid scheme, and
C→ Repk (G) is an equivalence. Taking similar notations to before, we get that
G = End⊗ (ω).

The last part is to obtain the inverse S : B → B, that is to give G the structure
of a group scheme rather then a monoid scheme. We assumed that all objects
in C are dualizable. If η : F ⇒ G is a SM natural transformation between SM
functors between SM categories with all objects dualizable, we can define an
inverse by G (X) ∼−→ G (X∗)∗ (ηX∗ )∗

−−−−→ F (X∗)∗ ∼−→ F (X), so it is automatically
a natural equivalence. That is, in this case End⊗ (ω) = Aut⊗ (ω), and we are
done.

We remark that B was the colimit of BX , which in turn are finitely generated,
so G is pro-algebraic.

7 The Fundamental Group

Let X be a connected topological space, x0 ∈ X, denote G = π1 (X,x0). We
denote by X̃ the universal cover, and recall that it has a free transitive fiberwise
G-action. The category GSet is known to be equivalent to the category of
covers of X. Although this is valid approach to try to mimic in the algebraic
situation, and using the first part of the lecture we can actually define the
etale fundamental group, this is not the path we will follow. Rather, we will
use the category Repk (G) of k-representations. We claim that this category
is equivalent to the category of k-vector bundles with flat connection. For the
first direction, let V be a G-representation, X̃ × V is a vector bundle X̃ with
flat connection. It is equipped with a G-action, and the quotient

(
X̃ × V

)
/G

is a vector bundle over X, with an induced flat connection. For the other
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direction, let E → X be a vector bundle with a flat connection. Given a path
γ from x0 to itself, the connection gives a map Ex0 → Ex0 , and the flatness
of the connection guarantees that it depends only the homotopy class, so we
get a map G → GLEx0

, i.e. a G-representation. Therefore we can define the
composition ω : Conn (X) ∼= Repk (G) → Vectk, which takes a bundle to the
fiber over x0. The category is indeed neutral Tannakian, and using the theorem
we can recover the pro-algebraic approximation Aut⊗ (ω) of π1 (X,x0)alg = G.

Luckily, in Shaul’s talk we saw how to define the category of vector bundles
with flat connection in the algebraic situation. Namely, let k be a field of
characteristic 0, and let X be a geometrically connected smooth scheme over
k. We have a definition of the category of flat connections Conn (X). Now,
let x0 = Spec k (x0) → X be a point of X, then we have a functor which
takes the fiber of E at x0, i.e. ω : Conn (X) → Vectk(x0) given by E 7→ Ex0 .
The categories are indeed closed symmetric monoidal and abelian, and every
object is dualizable. By the fact that X is geometrically connected, End (1) =
k (x0). It can be checked that ω is indeed a fiber functor. Therefore we can
“reconstruct” a group which is defined to be the (pro-algebraic) fundamental
group π1 (X,x0) = Aut⊗ (ω).

Furthermore, suppose C is a full subcategory of Conn (X) which is neutral
Tannakian (namely, abelian subcategory, closed under tensor product, con-
tains the unit and closed to taking duals), then we can take the composition
C→ Conn (X)→ Vectk(x0) and reconstruct to get π1 (X,x0;C).

8 The Unipotent Fundamental Group

Lastly, it is a familiar fact e.g. from the theory of Lie algebras that it is a good
idea to look at nilpotent Lie algebras. The analogue of a nilpotent in a Lie
algebra in a group is a unipotent. In GLn this can be defined as an element A
such that A− I ∈ Matn is nilpotent, or equivalently, all eigenvalues of A are 1.
It turns out that every algebraic group is linear (i.e. embeds in GLn), and this
gives an invariant notion of unipotent elements. So it seems like a good idea to
study the maximal unipotent quotient group πuni

1 (X,x0). Luckily for us, this
also fits nicely to the framework of Tannakian reconstruction, namely there is a
full subcategory Connuni (X) ⊆ Conn (X) that can be described geometrically
whose reconstruction gives πuni

1 (X,x0), which we now wish to describe.

Going back to the topological case, we recall that an object in the category
was a representation G → GLEx0

, being unipotent means giving a unipotent
representation, i.e. acting via unipotent matrices. A unipotent matrix is conju-
gate to an upper triangular matrix with diagonal 1. Such a matrix determines
a series of invariant subspaces 0 = V0 < V1 < · · · < Vn−1 < Vn = Ex0 with
dimVi = i, that is a complete flag, where Vi is spanned by the first i elements
in the triangulating basis. Furthermore, the diagonal begin 1 is equivalent to
the action on the associated graded Vi/Vi−1 being trivial. It turns out if a
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group acts on a vector space via unipotent elements (i.e. we have a unipotent
representation), then we can conjugate them simultaneously to the above form.
This means that a unipotent representation is built as an iterated extension of
trivial representations. Going through the equivalence Conn (X) ∼= Repk (G),
this corresponds to bundles which are iterated extensions of the trivial bundle
with the trivial connection, so we can define the full subcategory Connuni (X)
of such bundles.

This is easily translated to the algebraic situation which gives the desired sub-
category Connuni (X) ⊆ Conn (X), whose reconstruction gives the unipotent
(pro-algebraic) fundamental group πuni

1 (X,x0) = π1
(
X,x0; Connuni (X)

)
. Sim-

ilarly, one can also define quasi-unipotent to be element s.t. some power is
unipotent, and get the group πquni

1 (X,x0).
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