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1 Motivation – Hopkins-Neeman and Balmer’s
Spectrum

Two short introductions to the topic are [7, 9] (note that they use the lan-
guage of triangular categories, rather than ∞-categories). In what follows, R is
noetherian ring, X = Spec (R), and Ch (X) is the symmetric monoidal stable
∞-category of chain complexes over R.

Problem. Can we recover X from Ch (X)?

The first partial answer to this question is given at [5, 10], later on in [1, 2] the
result is further improved, and we will state that version.

Definition 1. A perfect complex is a complex that is quasi-isomorphic to a
bounded complex of finitely-generated projective modules. These are the com-
pact objects in the category, so they can actually be defined categorically. De-
note by Chperf (X) the full subcategory of perfect complexes.

Definition 2. Let C be a symmetric monoidal stable ∞-category. A full sub-
category T is thick if:

1. 0 ∈ T,

2. let a f→ b → c cofiber sequence, if two out of {a, b, c} are in T, then so is
the third (remember that cofiber and fiber sequences are the same),

3. it is closed under retracts.

Example 3. Consider the case C = Chperf (X) (e.g. over Z, bounded chain
complexes of finitely-generated free abelian groups). Let K• ∈ Ch (X), and
define TK• = {A• ∈ Chperf (X) | A• ⊗K• = 0}. Clearly 0 ∈ TK• . Since tensor
is left, it sends pushout to pushout, and three are 0 so the fourth is 0. Lastly, if
A• → B• → A• is the identity and B• ⊗K• = 0 then idA•⊗K• factors through
0, thus A• ⊗K• = 0. Therefore TK• is thick.
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Definition 4. A thick subcategory T is an ideal if a ∈ T, b ∈ C =⇒ a⊗ b ∈ T.
Furthermore, it is a prime ideal if it is a proper subcategory, and a⊗ b ∈ T =⇒
a ∈ T or b ∈ T. The spectrum of the category is defined similarly to the classical
spectrum of a ring, Spc (C) = {P prime ideal}, and for any family of objects
S ⊆ C we define V (S) = {P ∈ Spc (C) | S ∩ P = ∅}, and these are the closed
subsets of the Zariski topology on Spc (C). We also denote spp (a) = V ({a}).

Theorem 5 (Balmer). There is a homeomorphism ϕ : X → Spc (Chperf (X))
given by ϕ (p) =

{
A• | (A•)p = 0

}
= TRp

.

Remark. This was actually upgraded to an isomorphism of locally-ringed spaces.

Proof (sketch). First we note that ϕ (p) is indeed a prime ideal. It was shown
to be thick. It is also clearly an ideal, since A•⊗B•⊗Rp = A•⊗0 = 0. Finally,
if 0 = (A• ⊗B•)p = (A•)p ⊗Rp

(B•)p. Assume by negation that (A•)p 6= 0 and
(B•)p 6= 0, i.e. (An)p 6= 0 and (Bm)p 6= 0 but (An)p ⊗Rp

(Bm)p = 0. Well,
localization of projective is projective, and a projective over a local ring is free,
and clearly if the tensor of two free modules vanish then one of them vanishes,
so (An)p = 0 and (Bm)p = 0 which is a contradiction. (Note that I lied, we
only know that (A• ⊗B•)p is quasi-isomorphic to 0, thus we need to work with
maps, the correct proof is similar but messier). Therefore ϕ (p) is indeed a prime
ideal.

Note that

ϕ (p) ∈ spp (A•) ⇐⇒ A• /∈ ϕ (p) ⇐⇒ (A•)p 6= 0 ⇐⇒ p ∈ supp (A•)

and their complements form bases for the topologies. Thus ϕ is continuous, and
if it is invertible, the inverse is continuous as well.

2 The Chromatic Picture

Although the category of spectra doesn’t arise as the corresponding category
for a scheme or a similar gadget, we can still try to “reconstruct the space X”
by applying this mechanism, and then try to use this decomposition.

We will concentrate at the p-local spectra, Sp(p), for some fixed prime. Such
localization is a mild operation, and actually all the statements that follow can
be stated at the level of all spectra, but it is easier to state them at Sp(p).
We also remind ourselves that the compact objects in spectra are finite spectra
Spfin, and in p-local spectra they are p-localizations of finite spectra Spfin

(p).

2.1 Morava K-Theory

A good reference for this part is [8, lectures 22, 24, 25]
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Definition 6. Let R be an evenly graded ring. R is called a graded field
if every non-zero homogenus element is invertible, equivalently it is a field F
concentrated at degree 0, or F

[
β±1] for β of positive even degree. An A∞-ring

spectrum E is a field if π∗E is a graded field.

Proposition 7. A field E has Kunneth, i.e. E∗ (X ⊗ Y ) ∼= E∗ (X)⊗π∗EE∗ (Y )
for any spectra X,Y .

Theorem 8 (Definition). For each prime p and n = 1, 2, . . . , there exists a
spectrum called Morava K-Theory of height n, denoted by K (p, n), which has
the following properties:

• π∗K (p, n) ∼= Fp
[
v±1
n

]
where deg vn = 2 (pn − 1),

• It is a field (and in particular, an A∞-ring spectrum).

We also take K (p, 0) = HQ and K (p,∞) = HFp and then we also have:

• If E is a field, then it has the structure of a K (p, n)-module for some p
and n = 0, 1, 2, . . . ,∞. In that sense K (p, n) is uniquely determined.

Example. Remember that K (regular complex K-theory) has π∗K = Z
[
β±1]

where deg β = 2. Taking K/p we get a spectrum with homotopy groups
Fp
[
β±1], and it can be shown that it is a module over K (p, 1), and since

deg v1 = 2 (p− 1) while deg β = 2, K/p is a direct sum of p − 1 copies of
K (p, 1).

2.2 Localization at E

A reference for what follows is at [8, lecture 20]. Let E be a spectrum.

Definition 9. A spectrum Z is called E-acyclic, if E∗ (Z) = π∗ (E ⊗ Z) = 0 (i.e.
E⊗Z ' 0). A spectrum Y is called E-local, if [Z, Y ]∗ = 0 (i.e. Map (Z, Y ) ' 0)
for all E-acyclic Z. The E-local spectra form a full subcategory SpE ⊂ Sp.

Definition 10. Let X be a a spectrum, its E-localization is the universal E-
local spectrum together with a map ϕ : X → LEX. I.e. s.t. for each map to an
E-local spectrum f : X → Y , there exists a unique f̃ : LEX → Y s.t. f = f̃ϕ.
In other word, the E-localization is the left adjoint to the inclusion SpE ⊂ Sp
(and the map corresponds to id ∈ Map (LEX,LEX) ∼= Map (X,LEX)).

Remark. The name localization might be confusing. We will use this mecha-
nism for K (p, n) which should be though of as a field. Analogously, the Fp-
localization of Z is Zp, i.e. the completion, not the localization (note that we
actually want to work in complexes, but this is the result we would get after
interpreting 〈S | R〉 as Z 〈R〉 → Z 〈S〉).
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2.3 The Thick Subcategory Theorem and Spc
(
Spfin

(p)

)
Many of the results below can be found at [8, lecture 26]. The Balmer spectrum
can be found at [2, corollary 9.5].

Proposition 11. Let TE = kerE∗ =
{
X ∈ Spfin

(p) | E∗ (X) = 0
}

(equivalently
X ⊗ E ' 0) i.e. the E-acyclics, then TE is thick.

Proof. The exact same proof from Chperf (X) works.

This leads us to the following definition.

Definition 12. We define C≥n = TK(p,n−1), the K (p, n− 1)-acyclics. By the
above it is thick. Also, C≥0 = Spfin

(p) and C≥∞ = {0}, which are trivially thick.

Proposition 13. For X ∈ Spfin
(p), if K (p, n)∗ (X) = 0 then K (p, n− 1)∗ (X) =

0.

Remark. This result is not true for any spectrum (e.g. for HQ whose K (p, n)-
homology doesn’t vanish at n = 0 but does at n = 1).

Definition 14. We say that a spectrum is of type n (possibly ∞), if its first
non-zero Morava K-Theory-homology is K (p, n).

Corollary. C≥n is the full subcategory of finite p-local spectra of type ≥ n (i.e.{
X ∈ Spfin

(p) | ∀m < n : K (p,m)∗ (X) = 0
}
). Thus clearly C≥n+1 ⊆ C≥n.

Proposition 15. The inclusion is proper C≥n+1 ( C≥n.

Proposition 16. If X ∈ Spfin
(p) is not contractible, then X has finite type.

Therefore ∩n<∞C≥n = {0} = C≥∞.

Proof. X ' 0 iff H∗ (X;Z) = 0 iff H∗ (X;Fp) = 0. Assume that X is not con-
tractible, then H∗ (X;Fp) is bounded (since X is a finite spectrum), thus for
large enough n, by Atiyah-Hirzebruch SS we haveK (p, n)∗ (X) ∼= H∗ (X;Fp)

[
v±1
n

]
,

i.e. X has finite type. We conclude that ∩n<∞C≥n = {0} = C≥∞.

Theorem 17 (Thick Subcategory Theorem [6]). If T is a thick subcategory of
Spfin

(p), then T = C≥n for some n = 0, 1, 2, . . . ,∞.

Remark. The proof relies on a major theorem called the Nilpotence Theorem.

Proposition 18. C≥n is a prime ideal (note that C≥0 is not a proper subcate-
gory, thus only for n = 1, 2, . . . ,∞).

Proof. ForX,Y by Kunneth we haveK (p, n− 1)∗ (X ⊗ Y ) = K (p, n− 1)∗ (X)⊗
K (p, n− 1)∗ (Y ). Therefore, if X ∈ C≥n, i.e. the homology vanishes, then so
does the homology ofX⊗Y , i.e. X⊗Y ∈ C≥n, so C≥n is an ideal. IfX⊗Y ∈ C≥n
then the homology of the product vanishes, therefore one in the right side must
vanish (they are graded vector spaces), so C≥n is a prime ideal.
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Corollary 19. Spc
(

Spfin
(p)

)
= {C≥1,C≥2, . . . ,C≥∞}, and the closed subsets are

{C≥k,C≥k+1, . . . ,C≥∞}.

Remark. The chromatic picture can be described for all Spfin at once, which
has all the primes above for each p with the above closed sets, except that all
C≥1 for different p are the same (HQ-acyclics.)

2.4 Morava E-Theory

Remark. There are many approaches and flavors to Morava E-Theory. The
one we use is based on [3] and [11]. See also [4]. Another approach is via
deformations of the formal group law of K (p, n), which can found at [8].

The results above indicate that K (p, n) “sees” K (p,m) for m < n. (For ex-
ample, we had the claim that K (p, n)∗ (X) = 0 =⇒ K (p,m)∗ (X) = 0 for
X ∈ Spfin

(p), which implied that any open set that contains C≥n+1 contains C≥m
as well). The localization LK(p,n) in some sense (which will be more precise
later) determines the n-th chromatic level, and an infinitesimal neighbourhood
around it, which will allow us to glue. We would like to find a spectrum that
sees all ≤ n chromatic levels at once.

Remember that S is analogous to Z, K (p, n) is analogous to Fp, so LK(p,n)
is analogous to completion at p (localization at Fp), thus the K (p, n)-local
sphere LK(p,n)S is analogous to Zp = W (Fp), which indeed sees infinitesimal
neighbourhood around p.

It makes sense to try an investigate its Galois extensions. I will not give a
precise definition, and definitely not for a general Galois Extension, but just to
give an idea:

Definition 20 (kind of). Let G be a finite group, and f : A → B a map
between two E∞-ring spectra s.t.:

1. f is equivariant w.r.t to the trivial G-action on A,

2. A→ BhG is an equivalence,

3. B ⊗A B →
⊕

GB, x⊗ y 7→ (x · g.y) is an equivalence.

Then B is called a Galois extension of A with Galois group G.

Remark. If we think about extension of (classical) fields, the first condition
means that G is acts on B as automorphisms over A, BG ⊆ B is always a
Galois extension, and the second condition ensures that A = BG, the third
condition says that G is actually the Galois groups (it might not act faithfully
for example).
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It turns out that there is a spectrum called Morava E-Theory of height n, de-
noted by E (p, n), which is the maximal Galois extension of LK(p,n)S (and the
Galois group, which is not finite but pro-finite, is called the Morava stabi-
lizer group). It has coefficients π∗E (p, n) ∼= W

(
Fp
)
Ju1, . . . , un−1K

[
β±1] where

deg ui = 0, deg β = 2.
The following statement is a formalization of the idea that E (p, n) sees all ≤ n
chromatic levels at once.

Proposition 21. We have:

• Being E (p, n)-acyclic and being K (p, 0)∨· · ·∨K (p, n)-acyclic is the same,

• Being E (p, n)-local and being K (p, 0) ∨ · · · ∨K (p, n)-local is the same,

• E (p, n)-localization and K (p, 0) ∨ · · · ∨K (p, n)-localization coincide.

Remark. In other words they are Bousfield equivalent, and clearly the first im-
plies the rest.

2.5 Further Results

The ideas above lead to the idea of studying spectra one prime at a time,
height-by-height. So given a spectrum we would like to know how to work out
the original spectrum from its different localizations.

Definition 22. Let X ∈ Spfin
(p). For each n we have a map LE(p,n+1)X →

LE(p,n)X, thus we can form the chromatic tower :

. . .→ LE(p,2)X → LE(p,1)X → LE(p,0)X

Theorem 23 (Chromatic Convergence Theorem [8, lecture 32]). The limit of
the chromatic tower is X.

Theorem 24 (Chromatic Square [8, lecture 23]). There is a pullback diagram:

LE(p,n)X //

��

LK(p,n)X

��
LE(p,n−1)X // LE(p,n−1)LK(p,n)X

The chromatic square gets its name from another relevant theorem (these the-
orems go under the name fracture theorems):

Theorem 25 (Arithmetic Square). Let X ∈ Sp. There is a pullback diagram:

X //

��

∏
LSFpX

��
LSQX // LSQ

(∏
LSFp

X
)
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(where actually LSFp
X = LSFp

X(p), so it contains less information then X(p)
[X(p) = LSZ(p)X is the p-localization and LSFp

X is the p-completion]).
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