Ambidexterity Seminar – The Chromatic Picture

Shay Ben Moshe

03/12/2017

1 Motivation – Hopkins-Neeman and Balmer's Spectrum

Two short introductions to the topic are [7, 9] (note that they use the language of triangular categories, rather than ∞ -categories). In what follows, R is noetherian ring, X = Spec(R), and Ch(X) is the symmetric monoidal stable ∞ -category of chain complexes over R.

Problem. Can we recover X from Ch(X)?

The first partial answer to this question is given at [5, 10], later on in [1, 2] the result is further improved, and we will state that version.

Definition 1. A *perfect complex* is a complex that is quasi-isomorphic to a bounded complex of finitely-generated projective modules. These are the compact objects in the category, so they can actually be defined categorically. Denote by $\operatorname{Ch}_{\operatorname{perf}}(X)$ the full subcategory of perfect complexes.

Definition 2. Let \mathcal{C} be a symmetric monoidal stable ∞ -category. A full subcategory \mathcal{T} is *thick* if:

- 1. $0 \in \mathcal{T}$,
- 2. let $a \xrightarrow{f} b \to c$ cofiber sequence, if two out of $\{a, b, c\}$ are in \mathcal{T} , then so is the third (remember that cofiber and fiber sequences are the same),
- 3. it is closed under retracts.

Example 3. Consider the case $\mathcal{C} = \operatorname{Ch}_{\operatorname{perf}}(X)$ (e.g. over \mathbb{Z} , bounded chain complexes of finitely-generated free abelian groups). Let $K_{\bullet} \in \operatorname{Ch}(X)$, and define $\mathcal{T}_{K_{\bullet}} = \{A_{\bullet} \in \operatorname{Ch}_{\operatorname{perf}}(X) \mid A_{\bullet} \otimes K_{\bullet} = 0\}$. Clearly $0 \in \mathcal{T}_{K_{\bullet}}$. Since tensor is left, it sends pushout to pushout, and three are 0 so the fourth is 0. Lastly, if $A_{\bullet} \to B_{\bullet} \to A_{\bullet}$ is the identity and $B_{\bullet} \otimes K_{\bullet} = 0$ then $\operatorname{id}_{A_{\bullet} \otimes K_{\bullet}}$ factors through 0, thus $A_{\bullet} \otimes K_{\bullet} = 0$. Therefore $\mathcal{T}_{K_{\bullet}}$ is thick.

Definition 4. A thick subcategory \mathcal{T} is an *ideal* if $a \in \mathcal{T}, b \in \mathcal{C} \implies a \otimes b \in \mathcal{T}$. Furthermore, it is a *prime ideal* if it is a proper subcategory, and $a \otimes b \in \mathcal{T} \implies a \in \mathcal{T}$ or $b \in \mathcal{T}$. The *spectrum* of the category is defined similarly to the classical spectrum of a ring, $\text{Spc}(\mathcal{C}) = \{\mathcal{P} \text{ prime ideal}\}$, and for any family of objects $S \subseteq \mathcal{C}$ we define $V(S) = \{\mathcal{P} \in \text{Spc}(\mathcal{C}) \mid S \cap \mathcal{P} = \emptyset\}$, and these are the closed subsets of the *Zariski topology* on Spc (\mathcal{C}). We also denote $\text{spp}(a) = V(\{a\})$.

Theorem 5 (Balmer). There is a homeomorphism $\varphi : X \to \text{Spc}(\text{Ch}_{\text{perf}}(X))$ given by $\varphi(\mathfrak{p}) = \left\{ A_{\bullet} \mid (A_{\bullet})_{\mathfrak{p}} = 0 \right\} = \mathfrak{T}_{R_{\mathfrak{p}}}.$

Remark. This was actually upgraded to an isomorphism of locally-ringed spaces.

Proof (sketch). First we note that $\varphi(\mathfrak{p})$ is indeed a prime ideal. It was shown to be thick. It is also clearly an ideal, since $A_{\bullet} \otimes B_{\bullet} \otimes R_{\mathfrak{p}} = A_{\bullet} \otimes 0 = 0$. Finally, if $0 = (A_{\bullet} \otimes B_{\bullet})_{\mathfrak{p}} = (A_{\bullet})_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} (B_{\bullet})_{\mathfrak{p}}$. Assume by negation that $(A_{\bullet})_{\mathfrak{p}} \neq 0$ and $(B_{\bullet})_{\mathfrak{p}} \neq 0$, i.e. $(A_n)_{\mathfrak{p}} \neq 0$ and $(B_m)_{\mathfrak{p}} \neq 0$ but $(A_n)_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} (B_m)_{\mathfrak{p}} = 0$. Well, localization of projective is projective, and a projective over a local ring is free, and clearly if the tensor of two free modules vanish then one of them vanishes, so $(A_n)_{\mathfrak{p}} = 0$ and $(B_m)_{\mathfrak{p}} = 0$ which is a contradiction. (Note that I lied, we only know that $(A_{\bullet} \otimes B_{\bullet})_{\mathfrak{p}}$ is quasi-isomorphic to 0, thus we need to work with maps, the correct proof is similar but messier). Therefore $\varphi(\mathfrak{p})$ is indeed a prime ideal.

Note that

$$\varphi(\mathfrak{p}) \in \operatorname{spp}(A_{\bullet}) \iff A_{\bullet} \notin \varphi(\mathfrak{p}) \iff (A_{\bullet})_{\mathfrak{p}} \neq 0 \iff \mathfrak{p} \in \operatorname{supp}(A_{\bullet})$$

and their complements form bases for the topologies. Thus φ is continuous, and if it is invertible, the inverse is continuous as well.

2 The Chromatic Picture

Although the category of spectra doesn't arise as the corresponding category for a scheme or a similar gadget, we can still try to "reconstruct the space X" by applying this mechanism, and then try to use this decomposition.

We will concentrate at the *p*-local spectra, $\text{Sp}_{(p)}$, for some fixed prime. Such localization is a mild operation, and actually all the statements that follow can be stated at the level of all spectra, but it is easier to state them at $\text{Sp}_{(p)}$. We also remind ourselves that the compact objects in spectra are finite spectra Sp_{fin}^{fin} , and in *p*-local spectra they are *p*-localizations of finite spectra $\text{Sp}_{(p)}^{fin}$.

2.1 Morava K-Theory

A good reference for this part is [8, lectures 22, 24, 25]

Definition 6. Let R be an evenly graded ring. R is called a graded field if every non-zero homogenus element is invertible, equivalently it is a field Fconcentrated at degree 0, or $F[\beta^{\pm 1}]$ for β of positive even degree. An A_{∞} -ring spectrum E is a field if π_*E is a graded field.

Proposition 7. A field E has Kunneth, i.e. $E_*(X \otimes Y) \cong E_*(X) \otimes_{\pi_*E} E_*(Y)$ for any spectra X, Y.

Theorem 8 (Definition). For each prime p and n = 1, 2, ..., there exists a spectrum called Morava K-Theory of height n, denoted by K(p, n), which has the following properties:

- $\pi_* K(p,n) \cong \mathbb{F}_p\left[v_n^{\pm 1}\right]$ where deg $v_n = 2(p^n 1)$,
- It is a field (and in particular, an A_{∞} -ring spectrum).

We also take $K(p,0) = H\mathbb{Q}$ and $K(p,\infty) = H\mathbb{F}_p$ and then we also have:

 If E is a field, then it has the structure of a K (p, n)-module for some p and n = 0, 1, 2, ...,∞. In that sense K (p, n) is uniquely determined.

Example. Remember that K (regular complex K-theory) has $\pi_*K = \mathbb{Z}\left[\beta^{\pm 1}\right]$ where deg $\beta = 2$. Taking K/p we get a spectrum with homotopy groups $\mathbb{F}_p\left[\beta^{\pm 1}\right]$, and it can be shown that it is a module over K(p, 1), and since deg $v_1 = 2(p-1)$ while deg $\beta = 2$, K/p is a direct sum of p-1 copies of K(p, 1).

2.2 Localization at E

A reference for what follows is at [8, lecture 20]. Let *E* be a spectrum.

Definition 9. A spectrum Z is called *E*-acyclic, if $E_*(Z) = \pi_*(E \otimes Z) = 0$ (i.e. $E \otimes Z \simeq 0$). A spectrum Y is called *E*-local, if $[Z, Y]_* = 0$ (i.e. Map $(Z, Y) \simeq 0$) for all *E*-acyclic Z. The *E*-local spectra form a full subcategory $\text{Sp}_E \subset \text{Sp}$.

Definition 10. Let X be a spectrum, its *E*-localization is the universal *E*-local spectrum together with a map $\varphi : X \to L_E X$. I.e. s.t. for each map to an *E*-local spectrum $f : X \to Y$, there exists a unique $\tilde{f} : L_E X \to Y$ s.t. $f = \tilde{f}\varphi$. In other word, the *E*-localization is the left adjoint to the inclusion $\operatorname{Sp}_E \subset \operatorname{Sp}$ (and the map corresponds to $\operatorname{id} \in \operatorname{Map}(L_E X, L_E X) \cong \operatorname{Map}(X, L_E X)$).

Remark. The name localization might be confusing. We will use this mechanism for K(p, n) which should be though of as a field. Analogously, the \mathbb{F}_{p} -localization of \mathbb{Z} is \mathbb{Z}_p , i.e. the completion, not the localization (note that we actually want to work in complexes, but this is the result we would get after interpreting $\langle S \mid R \rangle$ as $\mathbb{Z} \langle R \rangle \to \mathbb{Z} \langle S \rangle$).

2.3 The Thick Subcategory Theorem and Spc $(Sp_{(p)}^{fin})$

Many of the results below can be found at [8, lecture 26]. The Balmer spectrum can be found at [2, corollary 9.5].

Proposition 11. Let $\mathcal{T}_E = \ker E_* = \left\{ X \in \mathrm{Sp}_{(p)}^{\mathrm{fin}} \mid E_*(X) = 0 \right\}$ (equivalently $X \otimes E \simeq 0$) i.e. the E-acyclics, then \mathcal{T}_E is thick.

Proof. The exact same proof from $Ch_{perf}(X)$ works.

This leads us to the following definition.

Definition 12. We define $\mathcal{C}_{\geq n} = \mathcal{T}_{K(p,n-1)}$, the K(p, n-1)-acyclics. By the above it is thick. Also, $\mathcal{C}_{\geq 0} = \operatorname{Sp}_{(p)}^{\operatorname{fin}}$ and $\mathcal{C}_{\geq \infty} = \{0\}$, which are trivially thick.

Proposition 13. For $X \in \text{Sp}_{(p)}^{\text{fin}}$, if $K(p,n)_*(X) = 0$ then $K(p,n-1)_*(X) = 0$.

Remark. This result is not true for any spectrum (e.g. for $H\mathbb{Q}$ whose K(p, n)-homology doesn't vanish at n = 0 but does at n = 1).

Definition 14. We say that a spectrum is of type n (possibly ∞), if its first non-zero Morava K-Theory-homology is K(p, n).

Corollary. $\mathbb{C}_{\geq n}$ is the full subcategory of finite p-local spectra of type $\geq n$ (i.e. $\left\{X \in \mathrm{Sp}_{(p)}^{\mathrm{fin}} \mid \forall m < n : K(p,m)_*(X) = 0\right\}$). Thus clearly $\mathbb{C}_{\geq n+1} \subseteq \mathbb{C}_{\geq n}$.

Proposition 15. The inclusion is proper $\mathbb{C}_{\geq n+1} \subsetneq \mathbb{C}_{\geq n}$.

Proposition 16. If $X \in \operatorname{Sp}_{(p)}^{\operatorname{fin}}$ is not contractible, then X has finite type. Therefore $\bigcap_{n < \infty} \mathfrak{C}_{\geq n} = \{0\} = \mathfrak{C}_{\geq \infty}$.

Proof. $X \simeq 0$ iff $H_*(X; \mathbb{Z}) = 0$ iff $H_*(X; \mathbb{F}_p) = 0$. Assume that X is not contractible, then $H_*(X; \mathbb{F}_p)$ is bounded (since X is a finite spectrum), thus for large enough n, by Atiyah-Hirzebruch SS we have $K(p, n)_*(X) \cong H_*(X; \mathbb{F}_p)[v_n^{\pm 1}]$, i.e. X has finite type. We conclude that $\bigcap_{n < \infty} \mathbb{C}_{\geq n} = \{0\} = \mathbb{C}_{\geq \infty}$. \Box

Theorem 17 (Thick Subcategory Theorem [6]). If \mathcal{T} is a thick subcategory of $\operatorname{Sp}_{(p)}^{\operatorname{fin}}$, then $\mathcal{T} = \mathbb{C}_{\geq n}$ for some $n = 0, 1, 2, \ldots, \infty$.

Remark. The proof relies on a major theorem called the Nilpotence Theorem.

Proposition 18. $\mathbb{C}_{\geq n}$ is a prime ideal (note that $\mathbb{C}_{\geq 0}$ is not a proper subcategory, thus only for $n = 1, 2, ..., \infty$).

Proof. For X, Y by Kunneth we have $K(p, n - 1)_*(X \otimes Y) = K(p, n - 1)_*(X) \otimes K(p, n - 1)_*(Y)$. Therefore, if $X \in \mathbb{C}_{\geq n}$, i.e. the homology vanishes, then so does the homology of $X \otimes Y$, i.e. $X \otimes Y \in \mathbb{C}_{\geq n}$, so $\mathbb{C}_{\geq n}$ is an ideal. If $X \otimes Y \in \mathbb{C}_{\geq n}$ then the homology of the product vanishes, therefore one in the right side must vanish (they are graded vector spaces), so $\mathbb{C}_{\geq n}$ is a prime ideal. \Box

Corollary 19. Spc $\left(\operatorname{Sp}_{(p)}^{\operatorname{fin}}\right) = \{\mathcal{C}_{\geq 1}, \mathcal{C}_{\geq 2}, \ldots, \mathcal{C}_{\geq \infty}\}$, and the closed subsets are $\{\mathcal{C}_{\geq k}, \mathcal{C}_{\geq k+1}, \ldots, \mathcal{C}_{\geq \infty}\}$.

Remark. The chromatic picture can be described for all Sp^{fin} at once, which has all the primes above for each p with the above closed sets, except that all $C_{>1}$ for different p are the same (HQ-acyclics.)

2.4 Morava E-Theory

Remark. There are many approaches and flavors to Morava E-Theory. The one we use is based on [3] and [11]. See also [4]. Another approach is via deformations of the formal group law of K(p, n), which can found at [8].

The results above indicate that K(p,n) "sees" K(p,m) for m < n. (For example, we had the claim that $K(p,n)_*(X) = 0 \implies K(p,m)_*(X) = 0$ for $X \in \operatorname{Sp}_{(p)}^{\operatorname{fin}}$, which implied that any open set that contains $\mathcal{C}_{\geq n+1}$ contains $\mathcal{C}_{\geq m}$ as well). The localization $L_{K(p,n)}$ in some sense (which will be more precise later) determines the *n*-th chromatic level, and an infinitesimal neighbourhood around it, which will allow us to glue. We would like to find a spectrum that sees all $\leq n$ chromatic levels at once.

Remember that \mathbb{S} is analogous to \mathbb{Z} , K(p,n) is analogous to \mathbb{F}_p , so $L_{K(p,n)}$ is analogous to completion at p (localization at \mathbb{F}_p), thus the K(p,n)-local sphere $L_{K(p,n)}\mathbb{S}$ is analogous to $\mathbb{Z}_p = W(\mathbb{F}_p)$, which indeed sees infinitesimal neighbourhood around p.

It makes sense to try an investigate its Galois extensions. I will not give a precise definition, and definitely not for a general Galois Extension, but just to give an idea:

Definition 20 (kind of). Let G be a finite group, and $f : A \to B$ a map between two E_{∞} -ring spectra s.t.:

- 1. f is equivariant w.r.t to the trivial G-action on A,
- 2. $A \to B^{hG}$ is an equivalence,
- 3. $B \otimes_A B \to \bigoplus_C B, x \otimes y \mapsto (x \cdot g.y)$ is an equivalence.

Then B is called a *Galois extension* of A with Galois group G.

Remark. If we think about extension of (classical) fields, the first condition means that G is acts on B as automorphisms over A, $B^G \subseteq B$ is always a Galois extension, and the second condition ensures that $A = B^G$, the third condition says that G is actually the Galois groups (it might not act faithfully for example).

It turns out that there is a spectrum called Morava E-Theory of height n, denoted by E(p, n), which is the maximal Galois extension of $L_{K(p,n)}\mathbb{S}$ (and the Galois group, which is not finite but pro-finite, is called the Morava stabilizer group). It has coefficients $\pi_* E(p, n) \cong W(\overline{\mathbb{F}}_p) [\![u_1, \ldots, u_{n-1}]\!] [\beta^{\pm 1}]$ where $\deg u_i = 0, \deg \beta = 2.$

The following statement is a formalization of the idea that E(p, n) sees all $\leq n$ chromatic levels at once.

Proposition 21. We have:

- Being E(p, n)-acyclic and being $K(p, 0) \lor \cdots \lor K(p, n)$ -acyclic is the same,
- Being E(p, n)-local and being $K(p, 0) \lor \cdots \lor K(p, n)$ -local is the same,
- E(p,n)-localization and $K(p,0) \lor \cdots \lor K(p,n)$ -localization coincide.

Remark. In other words they are *Bousfield equivalent*, and clearly the first implies the rest.

2.5 Further Results

The ideas above lead to the idea of studying spectra one prime at a time, height-by-height. So given a spectrum we would like to know how to work out the original spectrum from its different localizations.

Definition 22. Let $X \in \text{Sp}_{(p)}^{\text{fin}}$. For each *n* we have a map $L_{E(p,n+1)}X \to L_{E(p,n)}X$, thus we can form the chromatic tower:

$$\ldots \to L_{E(p,2)}X \to L_{E(p,1)}X \to L_{E(p,0)}X$$

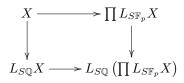
Theorem 23 (Chromatic Convergence Theorem [8, lecture 32]). The limit of the chromatic tower is X.

Theorem 24 (Chromatic Square [8, lecture 23]). There is a pullback diagram:

$$\begin{array}{ccc} L_{E(p,n)}X & \longrightarrow & L_{K(p,n)}X \\ & & & \downarrow \\ & & & \downarrow \\ L_{E(p,n-1)}X & \longrightarrow & L_{E(p,n-1)}L_{K(p,n)}X \end{array}$$

The chromatic square gets its name from another relevant theorem (these theorems go under the name fracture theorems):

Theorem 25 (Arithmetic Square). Let $X \in \text{Sp.}$ There is a pullback diagram:



(where actually $L_{S\mathbb{F}_p}X = L_{S\mathbb{F}_p}X_{(p)}$, so it contains less information then $X_{(p)}$ $[X_{(p)} = L_{S\mathbb{Z}_{(p)}}X$ is the p-localization and $L_{S\mathbb{F}_p}X$ is the p-completion]).

References

- P. Balmer. The spectrum of prime ideals in tensor triangulated categories. arXiv:math/0409360, 2004.
- [2] P. Balmer. Spectra, spectra, spectra tensor triangular spectra versus zariski spectra of endomorphism rings. Algebraic and Geometric Topology 10, 1521–1563, 2010.
- [3] E. Devinatz and M. Hopkins. Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups. *Topology* 43, no.1, 1-47, 2004.
- [4] H.-W. Henn. A mini-course on Morava stabilizer groups and their cohomology. arXiv:1702.05033, 2017.
- [5] M. Hopkins. Global methods in homotopy theory. Homotopy Theory Proc. Durham Symp. 1985. Cambridge University Press. Cambridge, 1987.
- [6] M. Hopkins and J. H. Smith. Nilpotence and stable homotopy theory II. Annals of Mathematics, 148(1), second series, 1-49, 1998.
- [7] S. B. Iyengar. Thick subcategories of perfect complexes over a commutative ring. 2006.
- [8] J. Lurie. Chromatic homotopy theory. 252x course notes, 2010.
- [9] T. Murayama. The classification of thick subcategories and balmer's reconstruction theorem. 2015.
- [10] A. Neeman. The chromatic tower of $\mathcal{D}(R)$. Topology 31, 1992.
- [11] J. Rognes. Galois extensions of structured ring spectra. arXiv:math/0502183, 2005.