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There are two new references which are really great, they are more of a survey,
but they give a very nice treatment of all of the material here [Beh19; Mei17].
There are notes by Akhil [Mat12]. The original computation, which is fairly
well written, is in [Bau03]. Another computation from roughly the same time
is in [Rez01]. Supplementary material on the moduli stack of elliptic curves is
in [MO17]. Another good survey of the theory, which doesn’t really get to the
computations, is [Goe09].

1 What’s Special About Height 1 and a Con-
struction of KO

Recall that the one of the main objects of study in chromatic homotopy theory
is En, Morava E-Theory at height n and prime p. However, height n = 1 is very
special for various reasons, e.g.:

1. We have an integral model, namely complex K-theory KU, such that E1 =
KU∧p is its p-completion.

2. We have a geometric model, i.e. E∗1 (X) has a geometric definition in
terms of X, namely vector bundles on X (which for example allows the
construction of equivariant Morava E-theory, using KUG i.e. G-vector
bundles).

There are some programs trying to address these in higher heights, but in this
talk, whose topic is TMF, we will only address the first point, namely the
existence of an integral model at height 2. In fact, the integral model will
be analogues to KO i.e. orthogonal K-theory (of vector bundles over the real
numbers), which is KUhC2 , rather than the whole of KU.
To generalize the construction of KO to height 2, we give an alternative con-
struction of it, which will be more amenable to generalizations. A reference for
this part is in [Mat12, Section 2].
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Definition 1. Let X be a scheme. A one dimensional torus over X is a group
scheme G/X that is isomorphic to Gm after a faithfully flat extension. We let
M1tori : Schop → Grpd be the functor sending X to the groupoid of tori over X
with isomorphisms between them. This is the moduli stack of (one dimensional)
tori.

Theorem 2. There is an isomorphism of stacks M1tori ∼= BC2, meaning that
M1tori (X) = hom (X,BC2).

We will not prove this, but we notice that the automorphisms ofGm = SpecZ
[
t, t−1]

(as a group scheme) are the identity and x 7→ x−1. The stack M1tori has a
structure sheaf O (in the etale topology). Furthermore, there is a morphism
M1tori →Mfg sending a group scheme G to the formal group which is the com-
pletion at the identity G∧e . Notice that such formal groups have height ≤ 1.
From any formal group Ĝ we can form ωG∧ = T ∗e Ĝ the cotangent bundle which
also parameterizes invariant bundles. This assemble to the sheaf of invariant
differential forms ω on Mfg, which can be pulled to M1tori.

Theorem 3. There exists a sheaf of E∞-rings Otop on M1tori. For an etale
map G : SpecR → M1tori denote the E∞-ring EG = Otop (SpecR). Then the
following holds:

1. EG is even-periodic (in particular complex-orientable).

2. π0EG = O (SpecR) = R, and πtEG = ω
⊗t/2
G (0 for odd).

3. Spf E0
G (BU (1)) = G∧e .

We can then take the global sections Γ (M1tori;Otop) (as an E∞-ring). We have a
descent spectral sequence (coming from taking homotopy groups)Hs (M1tori;πtOtop)⇒
πt−sΓ (M1tori;Otop). By the above we know thatHs (M1tori;πtOtop) = Hs

(
BC2;ω⊗t/2).

One can then show that this spectral sequence coincides with the KU-based
Adams spectral for computing the homotopy groups of KO, and we get that
KO = Γ (M1tori;Otop).

2 The Construction of TMF

One may wonder if we can take a similar approach at height 2. For this we
would need some stack of geometric objects, from which we can form formal
groups with height ≤ 2. The stack of elliptic curves Mell is exactly such a
stack! Given an elliptic curve C over a ring R, we can consider the completion
at the identity C∧e , giving a map Mell →Mfg. It is also known that the formal
group associated to an elliptic curve is of height ≤ 2, the case of height 1 is
called ordinary, and the case of height 2 it is called supersingular.
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Naively, one might hope that we can use only the (sub)stack of supersingular
elliptic curves for the construction, however it is highly non-connected. The idea
is that we use ordinary elliptic curves to interpolate between the supersingular
ones in an interesting way. In fact, Mell is not compact, and for some purposes
it is better to work with the compactification Mell. This stack doesn’t admit a
simple description as M1tori ∼= BC2, but it is still not too complicated, especially
away from 2, 3.

Just like in the case of M1tori, we can pullback along Mell → Mfg to get the
sheaf of invariant differentials ω. Classically, there is the notion of a mod-
ular form described as a function on the upper half plane satisfying some
properties, or at least this the definition over C. From a modern perspec-
tive, a modular form (over Z) of weight k is exactly a section of ω⊗k, i.e.
MFk = H0 (Mell;ω⊗k

)
. This ring turns out to be fairly small, specifically

MF∗ = Z [c4, c6,∆] /
(
123∆ = c3

4 − c2
6
)
where ck ∈ MFk and ∆ ∈ MF12 (see

[Rez01, Proposition 10.3]). As we can see, away from 2, 3 this is even simpler,
i.e. MF∗

[ 1
2·3
]

= Z [c4, c6].

We now have the analogues big theorem:

Theorem 4 (Goerss-Hopkins-Miller-Lurie). There exists a sheaf of E∞-rings
Otop on Mell. For an etale map C : SpecR → Mell denote the E∞-ring EC =
Otop (SpecR). Then the following holds:

1. EC is even-periodic (in particular complex-orientable).

2. π0EC = O (SpecR) = R, and πtEC = ω
⊗t/2
G (0 for odd).

3. Spf E0
C (BU (1)) = C∧e .

Remark 5. It might seem like this is not a very sophisticated thing. Given
C : SpecR→Mell, we can construct a similar cohomology theory EC using the
Landweber exact functor theorem. However, for this we need some conditions
on the curve (the map should be flat), and more over the theorem says that we
can lift EC from a cohomology theory to a spectrum and even to an E∞-ring.
Furthermore, it assembles into a sheaf (on the etale site).

Now, analogously to the case of KO = Γ (M1tori;Otop) we define

Definition 6. TMF = Γ (Mell;Otop), and the more complicated variant Tmf =
Γ
(
Mell;Otop). Their connective cover (which turns out to be the same) is

denoted by tmf = TMF≥0. These are all E∞-rings.

We will work with TMF from now on. Similarly to before, taking homotopy
groups give a spectral sequence Es,t2 = Hs (Mell;πtOtop) ⇒ πt−sTMF (and
similarly for Mell and Tmf).

To connect this with modular forms, recall that MF∗ = H0 (Mell;ω⊗∗
)
, thus

the edge homomorphism in the spectral sequence is π∗Tmf → MF∗/2. As there
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are modular forms only in non-negative weights, it makes sense to take the map
π∗tmf → MF∗/2, and for example this map is an isomorphism away from 2, 3
(as we shall see soon), which motivates the name. We recall that since tmf is
an E∞-ring, it has a unit S → tmf, which gives us π∗S → π∗tmf → MF∗/2, so
in some sense π∗tmf is a mixture of the two.

3 Homotopy Groups Away From 2, 3

In this part we localize everything away from 2, 3, i.e. work over Z
[ 1

2·3
]
, but we

will sometimes omit this from the notation. We first computeHs (Mell;πtOtop) =
Hs
(
Mell;ω⊗k

)
(where k = t/2), which is the E2-page of our spectral sequence.

Away from the primes 2, 3 any elliptic curve is (non-canonically) isomorphic to
a curve Cc4,c6 in P2 cut by the Weierstrass equation y2 = x3 − 27c4x − 54c6,
where the discriminant ∆ = c3

4−c
2
6

123 is invertible. Moreover, there is a canonical
invariant differential on this curve given by ηC = dx

2y . The isomorphisms of
such curves are given as follows, for every λ ∈ Gm there is an isomorphism
fλ : Cc4,c6

∼−→ Cλ4c4,λ6c6 defined by fλ (x, y) =
(
λ2x, λ3y

)
. We also see that

f∗ληC = λ2dx
2λ3y = 1

ληC (Mark Behrens gets λ, am I wrong?).
To be more formal, what we see is that we have a universal elliptic curve Cc4,c6

together with a trivialization of the invariant differentials over SpecA, where
A = Z

[ 1
2·3
] [
c4, c6,∆−1]. This data is acted by Gm, to giveMell = SpecA//Gm,

and we denote the projection by π : SpecA → Mell. Then, to compute things
like sections and cohomology, we may instead consider Gm-equivariant versions
of these on SpecA.

Proposition 7. Let X = SpecR be an affine scheme. Giving a Gm-action on
X is equivalent to giving a Z-grading on R. In fact, we have an equivalence
AffGm

∼= GrCRingop.

Proof. We hint the construction. A Gm-action is a map X × Gm → X, i.e.
R→ R⊗Z

[
t, t−1] = R

[
t, t−1]. So given a Gm-action we define the k-th graded

piece by Rk =
{
r | r 7→ rtk

}
(we won’t show that indeed R =

⊕
Rk). This

works in the other, given a grading R =
⊕
Rk, define an action by r 7→ rtk for

r ∈ Rk.

Example 8. Let R = k [x] with grading |x| = 1, i.e. the action comes from
xn 7→ xntn. We can define the sheaf OX [1] to be the trivial OX -module, but
with the action shifted by one. On the algebraic side this is the module R [1] =
k [x] {z}, so that |xnz| = n+ 1 (i.e. acted by xnz 7→ xnztn+1) or more generally
OX [k] = (OX [1])⊗k given by k [x]

{
zk
}
. The Gm-equivariant sections of OX [k],

which correspond to sections on X//Gm, are all the sections of grading 0, so
that xnzk is a section if and only if n = −k, i.e. ΓGm

(X;OR [−k]) = k
{
xk
}

=
Γk (X;OR), the k-th graded piece of the non-graded global sections. Thus we
have an interpretation of Γ (X//Gm;F).
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Proposition 9. There is an isomorphism Hs
(
Mell;ω⊗k

)
= Z

[ 1
2·3
] [
c4, c6,∆−1]

k
(k-th graded piece) if s = 0 and 0 otherwise.

Proof. In our case, the Gm-action on A gives it the grading |ck| = k. As we
have seen, f∗ληC = 1

ληC , thus we see that π∗ω on SpecA is OA [−1], so we get
that

Hs
(
Mell;ω⊗k

)
= Hs

(
SpecA//Gm;ω⊗k

)
= Hs

Gm

(
SpecA;OA [−1]⊗k

)
= Hs

Gm
(SpecA;OA [−k])

= Hs,k (SpecA;OA)

=
{
Z
[ 1

2·3
] [
c4, c6,∆−1]

k
s = 0

0

Theorem 10. ([Beh19, Proposition 1.3.7], [Rez01, Proposition 15.13]) π∗TMF
[ 1

2·3
]

=
Z
[ 1

2·3
] [
c4, c6,∆−1] where deg ck = 2k (and deg ∆ = 12).

Proof. Recall the spectral sequence Hs (TMF;πtOtop) ⇒ πt−sTMF. We have
just identified the E2-page above, and it is all concentrated at s = 0, so there
are no differentials or extensions. Note that πtOtop = ωt/2, hence the doubling
in degrees.

4 Homotopy Groups at 3

For references for this part, see the references in the beginning of this document.

4.1 Computing The Hopf Algebroid

As we have seen, away from 2, 3 the stack Mell was simply SpecA//Gm, which
is a fairly simple description, and could be handled by Gm-equivariant affine
schemes, or Z-graded rings. However, globally this stack is more complicated,
but still admits a very concrete description. We recall that (the data of) a
scheme is a functor X : Aff → Set, and (the data of) a stack is a functor
M : Aff → Grpd. Therefore, one source of stacks is as groupoid objects in
schemes, or even more simply in affine schemes.

Definition 11. A Hopf algebroid is a groupoid object in affine schemes, though
of in the algebraic side i.e. a cogroupid object in commutative rings.
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To unravel what this means, we recall that a groupoid object in C is a pair
objects X,M ∈ C, together with source and target maps s, t : M → X, unit
map e : X → M , composition m : M ×X,t,s M and inverse i : M → M ,
satisfying a bunch of axioms. Then, a Hopf algebroid is the opposite thing in
CRing, namely A,Γ ∈ CRing together with homomorphisms ηL, ηR : A → Γ
and so on. The corresponding stack should be though of as SpecA//Spec Γ.
Indeed,Mell can be described as a Hopf algebroid. Over the ringA = Z [a1, a2, a3, a4, a6]
there is again a cubic Cai : y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6, i.e. ev-
ery elliptic curve is pulled back from this curve. However, this pullback is not
unique, thus we need to add the isomorphisms via Γ. We could write now the
whole thing, but from now on we will restrict to the prime 3, which will offer
some simplification.
So from now on we base change to Z(3). Over Z(3) the cubic from above admits
a (canonical!) change of variables which eliminates all ai’s except a2, a4. I.e.
we can work with A = Z(3) [a2, a4] and the curve Ca4,a6 : y2 = x3 + a2x

2 + a4x.
Now we need to describe the isomorphisms of such curves. The isomorphisms
fall into two types. The first is like we had before, for every λ ∈ Gm we have
fλ : Ca2,a4

∼−→ Cλ2a2,λ4a4 given by fλ (x, y) =
(
λ2x, λ3y

)
. To handle these,

instead of encoding them in Γ, we can again work in the graded setting, i.e.
with a graded Hopf algebroid, so |ai| = i. Now, we have another isomorphism
sending x 7→ x+ r, y 7→ y, and what we get is:

y2 = (x+ r)3 + a2 (x+ r)2 + a4 (x+ r)
= x3 + (a2 + 3r)︸ ︷︷ ︸

a′
2

x2 +
(
a4 + 2a2r + 3r2)︸ ︷︷ ︸

a′
4

x+
(
r3 + a2r

2 + a4r
)

So to get a curve of the same form we must have the constant term 0, i.e.
r3 + a2r

2 + a4r, and we see that a2 7→ a′2 and a4 7→ a′4. It is not too hard to see
that these are all possible isomorphisms of such curves. Therefore, we define
Γ = A [r] /

(
r3 + a2r

2 + a4r
)
with |r| = 2 (to match the degrees of the other

things). We then need to define the various maps, ηL is the evident map coming
from the inclusion A → A [r] / (· · · ) = Γ, and ηR sends a2 7→ a′2 = a2 + 3r and
similarly for a4. Since the composition of x 7→ x + r and x 7→ x + r′ is x 7→
x+r+r′, one can check that the comultiplication is given by Ψ (r) = r⊗1+1⊗r,
etc.

4.2 Computing The Cohomologies (a.k.a. E2-page)

Now we are interested in computing Es,t2 = Hs (Mell;πtOtop) = Hs
(
Mell;ω⊗k

)
=

Hs,k (A,Γ).
We will not carry the whole computation of the cohomologies Hs,k (A,Γ), but
we will sketch the argument. Such cohomologies can be computed explicitly by
computing resolutions and so on. However, we can also solve the problem in
steps.
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An invariant ideal is an ideal I ≤ A, s.t. ηLI = ηRI. If I is an invariant ideal,
then

(
Ã, Γ̃

)
= (A/I,Γ/I) is also a Hopf algebroid corresponding to the substack

where I vanishes. Then, there is an algebraic Bockstein spectral sequence Es,t2 =
Hs
(
Ã, Γ̃; It/It+1) ⇒ Hs+t (A,Γ). In our case, one can easily check that I1 =

(3) , I2 = (3, a2) , I3 = (3, a2, a4) are invariant, so we can use these to compute
the cohomology in steps.

First one explicitly computes the cohomologies modulo I3, i.e. for the (very
small) Hopf algebroid

(
Z/3,Z/3 [r] /r3), using the cobar construction or minimal

resolution. Then we run the spectral sequence to get the cohomologies modulo
I2, and again modulo I1, and again for the cohomology of (A,Γ).

After doing all this we get that Hs,k (A,Γ) = Z(3)
[
α, β,∆±1, c4, c6

]
/I where

|α| = (1, 2) , |β| = (2, 6) , |∆| = (0, 12) , |ci| = (0, i) and the relations are I =(
3α, 3β, α2, αci, βci, 123∆ =

(
c3

4 − c2
6
))
.

4.3 Running The Spectral Sequence (a.k.a. differentials)

Remark 12. Our conventions for drawing the spectral sequences are as follows.
We use the Adams grading. A bullet denotes Z/3 and square denotes a Z(3).
We will see later that the spectral sequence is ∆3-periodic, so we show only
one copy and don’t write the multiples by ∆3m, to make the drawings clearer.
Moreover, whenever we have a line going 3 to the right and 1 up, this signifies
the same element multiplied by α.

Note that in particular we have a ∆-periodicity in the E2-page. We will use the
Adams grading in the spectral sequence, which gives Es,n+s

2 = Hs (Mell;πn+sO
top) =

Hs,(n+s)/2 (A,Γ)⇒ πnTMF(3), and the degrees now are deg ci = (0, 2i) ,degα =
(1, 3) ,deg β = (2, 10) ,deg ∆ = (0, 24) (note that we both double the second co-
ordinate because πtOtop = ω⊗t/2, and subtract the first from second to change
to Adams grading).

Lemma 13. c4, c6 are permanent cycles.

Proof idea. The idea here (which is extremely useful in other places in this
theory) is to consider a moduli of more structured elliptic curves. Specifically,
we consider the stack of elliptic curves with a choice of a point of order 2 (over
Z(3)) M1 (2). Its advantage is that is much simpler, M1 (2) = affine//Gm.
There is a forgetful map f : M1 (2) → Mell. It can be shown to be etale and
surjective, in fact a cover. Because of this, there is a transfer map between
the homotopy groups, and indeed between the spectral sequences. Because
of the simple structure of M1 (2), it is easy to see that the spectral sequence
corresponding to it is concentrated in s = 0, so everything is a permanent
cycle. The images of c4, c6 from Mell land in these elements thus they must be
permanent cycles there as well.
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This allows us to work modulo c4, c6, which gives us Z(3)
[
α, β,∆±1] / (3α, 3β, α2).

E2-page

n

s

0 5 10 15 20 25 30 35 40 45 50

0

5

10

1
α

∆
[α∆]

∆2 [α∆2]β
β2

β3
β4

β5

β∆
β2∆

β3∆

Lemma 14. αβ3 doesn’t survive to the E∞-page. Moreover, 〈α, α, α〉 = {β}.

Proof. Recall that we have a map of stacks Mell →Mfg. This induces a map of
spectral sequences, starting with H∗ (Mfg, ω

⊗∗)→ H∗ (Mell, ω
⊗∗), and converg-

ing to π∗S → π∗TMF. The one for the formal groups is the MU-based ANSS.
There is an element ν ∈ π3S, which is represented in the ANSS by an element
in the E2-page mapping to α. Similarly, there is an element β1 mapping to β.
In the homotopy groups of spheres, there is a relation called the Toda relation
which is νβ3

1 = 0, which implies the same relation for our computation, mean-
ing that this class doesn’t survive to the E∞-page. Similarly, the Toda bracket
corresponding to the 〈α, α, α〉 = {β} in the ANSS holds, which implies it in our
case.

It is easy to check that the first differential that can hit anything is d5, fur-
thermore, this is the only differential that can hit αβ3 which must vanish.
Thus we get d5 (β∆) = ±αβ3. For degree reasons, d5 (α) , d5 (β) = 0. Then,
applying the Leibniz rule we get that d5 (∆) = ±αβ2. Applying it induc-
tively implies that d5 (∆n) = ±nαβ2∆n−1. From this we also immediately get
d5
(
βk∆n

)
= ±nαβk+2∆n−1, and since α2 = 0 we get d5

(
αβk∆n

)
= 0. We

recall that corresponding to ∆n is a copy of Z(3), and at every other point we
have Z/3. This means that we still have ∆3-periodicity (because 3 = 0 in all
the torsion groups, so these don’t die). Thus, we can describe the survivors of
this differential as the ring generated by α, β, [3∆] , [α∆] ,

[
3∆2] , [α∆2] ,∆±3.
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E5-page

n

s

0 5 10 15 20 25 30 35 40 45 50

0

5

10

1
α

∆
[α∆]

∆2 [α∆2]β
β2

β3
β4

β5

β∆
β2∆

β3∆

For degree reasons, we have no other differentials until d9. We also see that α can
hit anything, thus it is a permanent cycle, and so are β, β2, β3, β4, and we denote
the corresponding elements in the homotopy groups by the same letters. Now,
the Toda brackets relations imply Massey product relations

{
β3} =

{
β2β

}
=

β2 〈α, α, α〉 =
〈
αβ2, α, α

〉
= 〈0, α, α〉 = απ27TMF. Since β3 is non-zero, there

must some element 0 6= x ∈ π27TMF in lower filtration such that β3 = αx. The
only possibility then is x = ±

[
α∆2], thus we get β3 = ±α

[
α∆2]. Therefore,

we get that β5 = ±αβ2 [α∆2] = 0 in the homotopy groups, so that β5 doesn’t
survive to the E∞-page. The only possibility is that d9

([
α∆2]) = ±β5.

E9-page

n

s

0 5 10 15 20 25 30 35 40 45 50

0

5

10

1
α [3∆] [α∆] [3∆2] [α∆2]β

β2
β3

β4
β5

Then, one sees that there can be no more differentials i.e. E10 = E∞.
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E10-page

n

s

0 5 10 15 20 25 30 35 40 45 50

0

5

10

1
α [3∆] [α∆] [3∆2]

β
β2

β3
β4

Lastly, there can be no extension problems, and we conclude:

Theorem 15. π∗TMF(3) = Z(3)
[
α, β, [α∆] , [3∆] ,

[
3∆2] ,∆±3, c4, c6

]
/J where

J is generated by the following relations:

• 123

3 [3∆] =
(
c3

4 − c2
6
)

• [3∆]2 = 3 [3∆]

• 3α, 3β, 3 [α∆] = 0

• α or β times [3∆] or
[
3∆2] is 0

• α2, [α∆]2 , β5 = 0

• αβ2 = 0

• α, β or [α∆] times c4 or c6 is 0

In particular, it is deg ∆3 = 3 · 24 = 72-periodic.

Remark 16. The computation of π∗TMF(2) is even more involved. However, we
remark that there is a horizontal vanishing line in the spectral sequence, and that
it is deg ∆8 = 8 · 24 = 192-periodic. Similarly, the spectral sequence computing
π∗TMF has a vanishing line, and it is deg ∆24 = 24 · 24 = 576-periodic.
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