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In general, we have two lassial algebrai invariants of a spae: Its (o)homology

and its homotopy groups. Taking ohomology X 7→ H∗X is easy to alulate,

but losees a lot of information, and π∗X is di�ult to ompute. However, it

turns out that all the omplexity is in the torsion part: if we work rationaly,

the story is di�erent.

De�nition 1. A spae X is alled rational if π∗X has the struture of a Q-

vetor spae.

Furthermore, for any spae X , we an de�ne its rationalization X → XQ,

a universal spae with homotopy groups π∗ (X) ⊗ Q
∼
−→ π∗ (XQ). We'll give a

preise de�nition later. For example, a model for the rational sphere Sn
Q is

Sn
Q ≃





∨

k≥1

Sn
k



 ∪





⊔

k≥2

Dn
k





where the attahing maps ∂Dn
k+1 → Sn

k ∨ Sn
k+1 are 1Sn

k
− (k + 1)Sn

k+1

, whih

represents the element

1
k+1 in Sn

Q. We de�ne the ateogry TopQ as the ategory

of simply onneted rational topologial spaes, and the funtor (−)Q : Top →

TopQ as the rationalization funtor. Then the idea is that the ategory TopQ

is simple, in the sense that the ohomologial information is enough to reover

the spae and its homotopy groups.

The �rst hint is by what is alled Hurevih mod C.

De�nition 2. A subategory C ⊂ Ab is alled a Serre lass if for any short

exat sequene

0 → M ′ → M → M ′′ → 0

M ∈ C i� M ′,M ′′ ∈ C, and C is losed under tensor produt and TorZ1 (−,−).

Example 3. The following are examples of Serre lasses:

1. Finite abelian groups.

2. Finitely generated abelian groups.

3. Torsion abelian groups
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The last example is the one important for us.

Fat 4. For any pair of simply onneted spaes (X,Y ), πk (X,Y ) ∈ C∀k < n
i� Hn (X,Y ) ∈ C∀k < n.

De�nition 5. A morphism f : A → B between abelian groups is alled C-
monomorphism (epimorphism) if ker f (coker f) belongs to C. f is C-isomorphism.

Using this de�nitions, we an state two of basi theorems of rational homo-

topy theory, stated originaly by Serre(?):

Theorem 6. (Hurewiz Theorem mod C) Let C be a Serre' lass of abelian

groups, and let X be a simply onneted spae. Suppose Hk (X) ∈ C for all

k < n (or equivalently πk (X)). Then there is an exat sequene:

K → πnX → HnX → C → 0

suh that K,C ∈ C. In partiular, πnX → HnX is a C-isomorphism.

Proof. Let {X≤n} be the Postnikov tower of X (that is, a sequene of spaes

X≤n → X≤n−1 → · · · suh that X ≃ lim
←−

X≤n, π>nX≤n = 0 and π≤nX
∼
−→

π≤nX≤n). Then using the exat sequenes of the pair (Xn−1, X), together with
the standard (and relative) Hurewiz homomorphisms:

0 = πn+1 (Xn−1)

��

// πn+1 (Xn−1, X)

≃

��

≃ // πn (Xn)

��

// πn (Xn−1) = 0

��

// πn (Xn−1, X)

��
C ∋ Hn+1 (Xn−1) // Hn+1 (Xn−1, X) // Hn (Xn) // Hn (Xn−1) ∈ C // Hn (Xn−1, X)

Theorem 7. (Whitehead mod C) Let C be a Serre lass, f : X → Y a map

between simply onneted spaes. Then the following are equivalent:

1. π≤n (f) is a C-isomorphism and πn+1 (f) is a C-epimorphism.

2. H≤n (f) is a C-isomorphism and Hn+1 (f) is a C-epimorphism.

Proof. Using the long exat sequenes for the pair (Y,X) we see that ondition
1 is equivalent to πk (Y,X) ∈ C while 2 is equivalent to Hk (Y,X) ∈ C.

Combining these two theorems, we onlude:

Corollary 8. For a map f : X → Y between simply onneted spaes,π∗f is an

equivalene i� H∗ (f,Q) is an isomorphism i� H∗ (f,Q) is an equivalene.

So we see that H∗ remembers some of the information about equivalenes (if

a map omes from a topologial map then it remembers the information about

equivalenes) and we may ask what is the missing in�rmation and whether or
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not we an enode it using a struture or some modi�ation to the ohomology

groups.

So only the information about H∗ is not enough, even if we remember the

ring struture. However, if we remmeber the struture of the hain omplex

itself, a hain with a di�erential and the up produt, then the answer will be

positive. However, the problem is that C∗ (X ;Q) with the up produt is not

ommutative and assoiative on the nose.

The alssial solution to this problem was to replae C∗ (X ;Q) with a quasi-

isomorphi hain omplex that has a strit dga struture: Sullivan de�ned suh

a model using loal di�erential forms: for every singular simplex ∆n → X we

an assosiate the group of di�erential forms on ∆n
with some ompatibility

between a form on a simplex and forms on its boundary, and together with the

loal di�erential of Ω• (∆
n), this will have the struture of a dga.

Preisely, for a spae X we have the presheaf X• : ∆
op → Set of the singular

simplies, and the presheaf

Ω• : ∆
op → cdgaQ

fortegful

−−−−−→ Set

. Then the di�erential forms on X will be natural transformations X• → Ω•.
One an show that the set of natural transformations has a struture of a dga,

by applying the operations pointwise (or by Kan extension). Thus we obtain a

funtor

(

TopQ
)op

→ cdgaQ

X 7→ HomsSet (X•,Ω•)

This dga is quasi-isomorphi to the singular hain, and Sullivan proved that this

funtor is fully faithful, and we have a simple haraterisation for its essentual

image.

However, there is a way to avoid the usage of di�erential forms, and use the

singular hain itself: C∗ (X ;Q) is indeed not stritly ommutative, but it has

the struture of an E∞-ring. More preisely, we an use the following.

De�nition 9. Let HQ ∈ Sp be the spetrum representing rational ohomology.

This is an E∞-ring, so we an de�ne the ategory ModHQ of module spetra

over Q.

The important di�erene of rational homology from any other homology

theories is the following observation:

De�nition 10. For any spetrum E, we have the notion of E-ayli spetra
- Y s.t. E ⊗ Y ≃ ∗, and E-loal spetra whih are those X s.t. for any E-
ayli Y and any f : Y → X , f is nullhomotopi. Finally, a map f : X → Y
is E-equivalene if f ⊗ E is an equivalene. A fundamental onept in stable

homotopy theory is the notion of Bous�eld loalization: For any spetrum E
there is a loalization funtor LE : Sp → SpE s.t. LE (X) is E-loal and
X → LE (X) is E-equivalene. If E is a ring, for example if E = HR for some

ordinary ring, then any E-module M is E-loal, so ModE ⊂ SpE .
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The spetrum HQ has two spetial properties: One is that HQ ≃ LHQS,

and the other is that this spetrum is �smashing�, that is LHQ (X) is given

by X 7→ LHQS ⊗ X . Combining these two observations, we obtain that HQ

loalization is given by X 7→ HQ⊗X . In partiular, sine LE is an equivalene

for E-loal spetra, we obtaing that any HQ-loal spetra X is also an HQ-

module by L−1HQ
: LHQX ≃ X ⊗HQ → X , so ModE ⊃ SpE and we get:

Corollary 11. SpHQ ≃ ModHQ.

Now we an reformulate the idea of rational homotopy in the following way:

For any ∞-ategory C and a set of morphisms W we an de�ne the loalization

of C WRT W , denoted by LW : C → C
[

W−1
]

, whih is the universal ategory

suh that all the morphisms in W are invertible.

Given a ring R, we have two notions of R-loal homotopy theory:

1. The �rst is the loalization of S≥1 WRT π∗ ⊗R equivalenes

2. The seond is the loalization SpHR. Sine any onneted spetrum is a

ommutative monoid in S, we have a forgetful funtor Ω∞ : Sp → S, and
this funtor admits a left adjoint, alled Σ∞+ . So using this funtor, we

an also de�ne the loalization of spaes WRT HR-loal spetra. That

is, take the omposition Σ∞+,Q
: S≥1

Σ∞

+

−−→ Sp
LHQ

−−−→ SpHQ ≃ ModHQ. Sine

any spae admits a diagonal map ∆ : X → X × X , this funtor fators

through

S≥1
(−)⊗HQ//

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙ coCAlg (ModHQ)

��
ModHQ

So we an also de�ne the loalization WRT (−)⊗HQ-equivalenes.

The seond loalization is loalization WRT H∗ (−,Q) equivalenes, so Serre's

theorem is then that these two notions are equivalent, and we de�ne:

De�nition 12. SQ
is the loalization of S≥1 using any of the equivalent loal-

izations above.

Serre's theorem also tells us that we an also take H∗ (−,Q) instead of

H∗ (−,Q), i.e. that the funtor

[

Σ∞+ (−) , HQ
]

:
(

SQ
)op

→ CAlg (ModHQ) := CAlgQ

is onservative. The question of rational homotopy theory is then whether or

not this funtor is also an embedding, and what is its essential image.

Remark 13. Even though the ategory CAlgQ seems ompliated and non-

algebrai, its atually equivalent to the atgory of cdgaQ, by

[

Σ∞+ (−) , HQ
]

→ C∗ (−;Q)
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so we indeed reover the lassial rational homotopy theory. Therefore, for now

on we will identify between the hain omplex Q onentrated in degree 0 and

the spetrum HQ, and the funtor C∗ (−;Q) with
[

Σ∞+ (−) , HQ
]

.

In general this funtor is not fully faithful, due to �nitness problems. How-

ever, if we restrit to �nite-type spaes, we will get a fully faithful funtor, with

a onrete haraterisation of its essential image:

Theorem 14. Let SQ
ft be the ategory of rational spaes with πnX �nite dimen-

sional Q-vetor spaes for n ≥ 2. Then the funtor

C∗ (−;Q) :
(

SQ
ft

)op

→ CAlgQ

is fully faithful, and its essential image is algebras A with the following proper-

ties:

1. πiA is �nite dimensional Q-vetor spaes for i < −2

2. π−1A = 0

3. π0A ≃ Q

4. π>0A = 0.

The funtor C∗ (−;Q) admits a right adjoint A 7→ MapCAlgQ
(A,Q). The

unit map is

eval : X → MapCAlgQ
(C∗ (X ;Q) ,Q)

x 7→ evalx

and the ounit map

A → C∗
(

MapCAlgQ (A,Q) ;Q
)

≃ Map
(

HQA, HQ
)

a 7→ evala

In order to show that C∗ (−;Q) is fully faithful, we have to show that the

unit map is an equivalene. Before proving the theorem, we will need some

alulations.

Lemma 15. C∗ (K (Q, n) ;Q) is the free ommutative algebra on the generator

Q [−n], i.e. an exterior algebra Λ∗ (Q [−n]) for n odd and a polynomial algebra

Q [x] with |x| = n for n even. In general, for a �nite dimensional Q-vetor spae

V , C∗ (K (V, n) ;Q) ≃ Free (V [−n]).

Proof. First we show that πm (C∗ (K (Q, n))) = H∗ (K (Q, n)) ≃ πm Free (Q [−n]).
We prove this by indution on n: For the ase n = 1, the map Z → Q indues

a map BZ → BQ whih is an isomorphism on rational homotopy, hene an

isomorphism on rational ohomology, and

Hm (BZ;Q) ≃ Hm
(

S1;Q
)

=

{

Q m = 0, 1

0 otherwise

= πm (Q⊕Q [−1]) = πm (Λ∗Q [−1])
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sine for m ≥ 2 ΛmQ [−1] is trivial: Its the quotient of Q ≃ Q ⊗Q · · · ⊗Q Q by

the ation of Σm, whih ats by multipliation by the sign of the permutation,

i.e. x = −x.
Now assume the laim holds for n− 1. We have the path-loop �bration

ΩK (Q, n) //

≃

��

PK (Q, n) //

≃

��

K (Q, n)

K (Q, n− 1) ⋆

We'll prove the ase of n even, so by hypothesis, Hq (K (Q, n− 1)) is Q for

q = 0, n− 1 and zero otherwise, and we an use the Serre spetral sequene for

this �bration to ompute H∗K (Q, n): The E2 page is

Ep,q
2 = Hp (K (Q, n) ;Hq (K (Q, n− 1))) ≃ Hp (K (Q, n) ;Q)⊗Hp (K (Q, n) ;Q) ⇒ Hp+q (∗)

and Ep,q
2 = 0 for q 6= 0, n− 1, so the only non-zero di�erential is dn : Ep,n−1

n →
Ep+n,0

n . Sine Ep,q
∞ = 0, dn is an isomorphism. Take a generator x ∈ E0,n−1

n ≃
Hn−1 (K (Q, n− 1)), and let y = dn (x) ∈ En,0

n ≃ Hn (K (Q, n)). Then y gener-

atesHn (K (Q, n)), and xy generatesEn,n−1
n ≃ Hn (K (Q, n))⊗Hn−1 (K (Q, n− 1)).

Then again, dn (xy) generate E2n,0
n ≃ H2n (K (Q, n)), and sine dn is a deriva-

tion dn (xy) = dn (x) y + xdn (y) = y2. We ontinue this way to show that yk

generates Hkn (K (Q, n)), i.e. Hkn (K (Q, n)) ≃ Q [y].
Thus, π∗C

∗ (K (Q, n) ;Q) ≃ π∗ Free (Q [−n]). Choose an element α ∈ π∗C
∗ (K (Q, n) ;Q)

that maps to a generator of π∗ Free (Q [−n]). Then α fators as a map Q [−n] →
C∗ (K (Q, n) ;Q), and thus extends to a map Free (Q [−n]) → C∗ (K (Q, n) ;Q).
This map is an isomorphism on homotopy, and thus an isomorphism.

As a onsequene of this omputation, we an atually ompute now the

rational homotopy groups of spheres!

Claim 16. For n odd, πk

(

Sn
Q

)

≃

{

Q k = n

0 otherwise

, and for n even, πk

(

Sn
Q

)

≃

{

Q k = n, 2n− 1

0 otherwise

. In partiular, πk (S
n) is �nite for k 6= n if n is odd and for

k 6= n, 2n− 1 if n is even.

Proof. For any n, Hn (−,Q) is represented by K (Q, n). In partiular Q ≃
Hn (Sn;Q) ≃ [Sn,K (Q, n)] = πn (K (Q, n)). Choose some f : Sn → K (Q, n)
representing a non-zero element (hene, a generator). By Hurewiz, f is an

isomorphism on Hn (K (Q, n) ;Q) → Hn (Sn;Q). So, for n odd we are done: f
is an isomorphism on ohomology, hene on homotopy, so π∗S

n
Q ≃ π∗K (Q, n).

For n even, we an writeH∗ (K (Q, n) ;Q) ≃ Q [x] for x ∈ Hn (K (Q, n) ;Q) ≃
Q a generator. Then x2 ∈ H2n (K (Q, n) ;Q) ≃ [K (Q, n) ,K (Q, 2n)]. Chose

a representative g : K (Q, n) → K (Q, 2n) for x2
, and let F → K (Q, n) be its
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�ber. Sine πn (K (Q, 2n)) = 0, f : Sn → K (Q, n) fators through the �ber

F // K (Q, n)
g // K (Q, 2n)

Sn

h

cc❍
❍
❍
❍
❍

f

OO

Sine πn (f) is an isomorphism so is πn (h), and thus by Hurewiz on Hn (h).
Its possible to show that the indued map on ohomology is a o�ber sequene,

i.e.

H∗ (F ;Q) ≃ Q [x] /
(

x2
)

so h is an isomorphism on ohomology, hene on π∗⊗Q. In partiular, Sn
Q ≃ F ,

and using the long exat sequene in homotopy we obtain πk

(

Sn
Q

)

≃

{

Q k = n, 2n− 1

0 otherwise

.

Now we go bak to prove 14:

Claim 17. The unit map eval : X → MapCAlgQ
(C∗ (X ;Q) ,Q) is an isomor-

phism.

Proof. We use the following sequene of arguments:

First, we redue to the ase where X is n-trunated for some n. This is

done by using X≤n, the nth
Postnikov spae, i.e. a spae with X → X≤n is an

isomorphism on π≤n and π>n (X≤n) = 0. Sine X ≃ lim
←−

Xn, and X is simply

onneted, C∗ (X ;Q) ≃ lim
−→

C∗ (X≤n;Q). Thus its su�es to show the laim for

X≤n, so we an use an indutive argument on n, where the base ase n = 1 is

obvious sine X is simply onneted.

Next, we use the fat that at least for X simply onneted of �nite type, the

�ber sequene

K (πnX,n)

��
X≤n // X≤n−1

is lassi�es by a pullbak square

X≤n

��

// ⋆

��
X≤n−1 // BK (πnX,n) ≃ K (πnX,n+ 1)

(in general it always lassi�ed byBAut (K (πnX,n)) ≃ Aut (πnX)⋊K (πnX,n+ 1)).
Then we use the fat that at least for �nite type simply onneted spaes, the
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funtor C∗ (−;Q) sends o�ber sequenes to �ber sequenes, i.e. we have a

pushout diagram

C∗ (K (πnX,n+ 1) ;Q) //

��

Q

��
C∗ (X≤n−1;Q) // C∗ (X≤n;Q)

Now by the indutive step X≤n−1 ≃ MapCalgQ
(C∗ (X≤n−1;Q) ,Q), and by

lemma ??

MapCalgQ
(C∗ (X≤n−1,Q) ,Q) ≃ MapCalgQ

(Free (Q [−n− 1]) ,Q)

≃ MapModQ

(

Σ−n−1HQ, HQ
)

≃ MapModQ

(

HQ,Σn+1HQ
)

{⋆} ≃ MapModQ

(

S,Σn+1HQ
)

≃ MapModQ

(

Σ∞+ (∗) ,Σn+1HQ
)

≃ MapS
(

∗,Ω∞Σn+1HQ
)

≃ Ω∞Σn+1HQ

≃ K (πnX,n+ 1)

where ⋆ is sine any map into an HQ-loal spetra fators through the loaliza-

tion, and LHQS ≃ HQ. Thus this holds also for X≤n.

Corollary 18. For any X,Y ∈ SQ
ft ,

MapSQ (Y,X) ≃ MapCalgQ
(C∗ (X ;HQ) , C∗ (Y ;Q))

i.e. C∗ (−;Q) is fully-faithful.

We now want to desribe the essential image, and show that its preisely

algebras A that satis�es onditions 1− 4.
First, let A be in the image. Conditions 2-4 are obvious. In order to show

that Cn (X ;Q) are �nite dimensional we use again an indutive argument and

the espliit haraterisation of the o�bers X≤n → X≤n−1 → K (πnX,n+ 1).
Its remains to prove that a dga satisfying onditions 1-4 is equivalent to the

ohomology of a rational spae. Let A ∈ CAlgQ. If A where indeed of the

form C∗ (X ;Q), then we ould reover X as MapCAlgQ
(A,Q), and in partiu-

lar X ∈ SQ
ft , but sine we don't know yet that A is in the essential image of

C∗ (−;Q), even if X is indeed a �nite type rational spae we still don't know its

orresponding to A. The idea is then to look at X = Map (A,Q) as the rational
point of the funtor

XA = MapCAlgQ
(A,−) : CAlg≥0Q → S
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For a general �eld the restrited Yoneda

X(−) :
(

CAlg≤0k

)op

→ Fun
(

CAlg≥0k ,S
)

is not an embedding. However, for a �eld of harateristi zero this is indeed

an embedding. The important properties of suh funtors are:

1. Sine we are mapping from a oonnetive algebra to onnetive algebras,

all the information is in its values on disrete algebras (and its value on

any onnetive algebra is its left Kan extension). i.e. the omposition

X(−) :
(

CAlg≤0Q

)op

→ Fun
(

CAlg≥0Q ,S
)

→ Fun
(

CAlg0Q,S
)

is also an embedding.

2. If A is −n trunated, then the values of XA are n-onneted.

3. For all i, the funtor R 7→ πiXA (R) restrited to CAlg0Q is given by R 7→
R⊗Q V for a �nite-dimensional Q vetor spae V .

In partiular, from property 2 and 3 we dedue that indeed the rational points

are rational spaes of �nite type XA (Q) ∈ SQ
ft .

Now in order to prove that A is in the essential image of C∗ (−;Q), we use
de�ne A′ := C∗ (XA (Q) ;Q). Then we want to show that A′ ≃ A. We have the

following diagram:

XA

##●
●●

●●
●●

●●
XA′

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚

XA (Q)

''PP
PP

PP
PP

PP
PP

u //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ XA′ (Q) = Map (C∗ (XA (Q) ,Q))

A

GG
✎
✎
✎
✎
✎
✎
✎
✎
✎
✎
✎
✎
✎
✎
✎

A′ = C∗ (XA (Q))

@@������������������

and we wish to show that the omposition A → A′ is an equivalene. Note that

u is the unit map of the adjuntion

(

SQ
ft

)op

⇄ CAlg<1
Q , hene an equivalene.

Sine πiX(−) (R) are Q are �nite Q-vetor spaes for any onnetive R, this

implies that XA → XA′
is also an equivalene XA → XA′

and hene A
∼
−→ A.

This observation now gives us a hint about how to extend the embedding to

all rational spaes, and not just �nite type spaes: We de�ne the subategory

Fun
(

CAlg≥0Q ,S
)

⊃ RType spanned by those funtors satisfying properties 1-3,

exept that we don't demant V to be �nite-dimensional in 3. Then its possible

to show that taking rational points indues an equivalene:

(−) (Q) : Fun
(

CAlg≥0Q ,S
)

⊃ RType → SQ
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