## Rational Homotopy

## December 22, 2019

In general, we have two classical algebraic invariants of a space: Its (co)homology and its homotopy groups. Taking cohomology  $X \mapsto H^*X$  is easy to calculate, but losees a lot of information, and  $\pi_*X$  is difficult to compute. However, it turns out that all the complexity is in the torsion part: if we work rationaly, the story is different.

**Definition 1.** A space X is called rational if  $\pi_*X$  has the structure of a Q-vector space.

Furthermore, for any space X, we can define its rationalization  $X \to X_{\mathbb{Q}}$ , a universal space with homotopy groups  $\pi_*(X) \otimes \mathbb{Q} \xrightarrow{\sim} \pi_*(X_{\mathbb{Q}})$ . We'll give a precise definition later. For example, a model for the rational sphere  $S_{\mathbb{Q}}^n$  is

$$S^n_{\mathbb{Q}} \simeq \left(\bigvee_{k \ge 1} S^n_k\right) \cup \left(\bigsqcup_{k \ge 2} D^n_k\right)$$

where the attaching maps  $\partial D_{k+1}^n \to S_k^n \vee S_{k+1}^n$  are  $1_{S_k^n} - (k+1)_{S_{k+1}^n}$ , which represents the element  $\frac{1}{k+1}$  in  $S_{\mathbb{Q}}^n$ . We define the category Top<sup> $\mathbb{Q}$ </sup> as the category of simply connected rational topological spaces, and the functor  $(-)_{\mathbb{Q}}$ : Top  $\to$ Top<sup> $\mathbb{Q}$ </sup> as the rationalization functor. Then the idea is that the category Top<sup> $\mathbb{Q}$ </sup> is simple, in the sense that the cohomological information is enough to recover the space and its homotopy groups.

The first hint is by what is called Hurevich mod  $\mathcal{C}$ .

**Definition 2.** A subcategory  $C \subset Ab$  is called a Serre class if for any short exact sequence

$$0 \to M' \to M \to M'' \to 0$$

 $M \in \mathcal{C}$  iff  $M', M'' \in \mathcal{C}$ , and  $\mathcal{C}$  is closed under tensor product and  $\operatorname{Tor}_{1}^{\mathbb{Z}}(-,-)$ .

**Example 3.** The following are examples of Serre classes:

- 1. Finite abelian groups.
- 2. Finitely generated abelian groups.
- 3. Torsion abelian groups

The last example is the one important for us.

**Fact 4.** For any pair of simply connected spaces (X, Y),  $\pi_k(X, Y) \in C \forall k < n$  iff  $H_n(X, Y) \in C \forall k < n$ .

**Definition 5.** A morphism  $f : A \to B$  between abelian groups is called *C*-monomorphism (epimorphism) if ker f (coker f) belongs to *C*. f is *C*-isomorphism.

Using this definitions, we can state two of basic theorems of rational homotopy theory, stated originally by Serre(?):

**Theorem 6.** (Hurewicz Theorem mod C) Let C be a Serre' class of abelian groups, and let X be a simply connected space. Suppose  $H_k(X) \in C$  for all k < n (or equivalently  $\pi_k(X)$ ). Then there is an exact sequence:

$$K \to \pi_n X \to H_n X \to C \to 0$$

such that  $K, C \in \mathcal{C}$ . In particular,  $\pi_n X \to H_n X$  is a  $\mathcal{C}$ -isomorphism.

*Proof.* Let  $\{X_{\leq n}\}$  be the Postnikov tower of X (that is, a sequence of spaces  $X_{\leq n} \to X_{\leq n-1} \to \cdots$  such that  $X \simeq \lim_{\leftarrow} X_{\leq n}, \pi_{>n}X_{\leq n} = 0$  and  $\pi_{\leq n}X \xrightarrow{\sim} \pi_{\leq n}X_{\leq n}$ ). Then using the exact sequences of the pair  $(X_{n-1}, X)$ , together with the standard (and relative) Hurewicz homomorphisms:

**Theorem 7.** (Whitehead mod C) Let C be a Serre class,  $f : X \to Y$  a map between simply connected spaces. Then the following are equivalent:

- 1.  $\pi_{\leq n}(f)$  is a C-isomorphism and  $\pi_{n+1}(f)$  is a C-epimorphism.
- 2.  $H_{\leq n}(f)$  is a C-isomorphism and  $H_{n+1}(f)$  is a C-epimorphism.

*Proof.* Using the long exact sequences for the pair (Y, X) we see that condition 1 is equivalent to  $\pi_k(Y, X) \in \mathcal{C}$  while 2 is equivalent to  $H_k(Y, X) \in \mathcal{C}$ .

Combining these two theorems, we conclude:

**Corollary 8.** For a map  $f : X \to Y$  between simply connected spaces, $\pi_* f$  is an equivalence iff  $H_*(f, \mathbb{Q})$  is an isomorphism iff  $H^*(f, \mathbb{Q})$  is an equivalence.

So we see that  $H^*$  remembers some of the information about equivalences (if a map comes from a topological map then it remembers the information about equivalences) and we may ask what is the missing infirmation and whether or not we can encode it using a structure or some modification to the cohomology groups.

So only the information about  $H^*$  is not enough, even if we remember the ring structure. However, if we remember the structure of the chain complex itself, a chain with a differential and the cup product, then the answer will be positive. However, the problem is that  $C^*(X;\mathbb{Q})$  with the cup product is not commutative and associative on the nose.

The calssical solution to this problem was to replace  $C^*(X; \mathbb{Q})$  with a quasiisomorphic chain complex that has a strict cdga structure: Sullivan defined such a model using local differential forms: for every singular simplex  $\Delta^n \to X$  we can assosiate the group of differential forms on  $\Delta^n$  with some compatibility between a form on a simplex and forms on its boundary, and together with the local differential of  $\Omega_{\bullet}(\Delta^n)$ , this will have the structure of a cdga.

Precisely, for a space X we have the presheaf  $X_{\bullet} : \Delta^{\mathrm{op}} \to \text{Set}$  of the singular simplices, and the presheaf

$$\Omega_{\bullet}: \Delta^{\mathrm{op}} \to \mathrm{cdga}_{\mathbb{Q}} \xrightarrow{\mathrm{fortegful}} \mathrm{Set}$$

. Then the differential forms on X will be natural transformations  $X_{\bullet} \to \Omega_{\bullet}$ . One can show that the set of natural transformations has a structure of a cdga, by applying the operations pointwise (or by Kan extension). Thus we obtain a functor

$$(\operatorname{Top}^{\mathbb{Q}})^{\operatorname{op}} \to \operatorname{cdga}_{\mathbb{Q}}$$
  
 $X \mapsto \operatorname{Hom}_{\operatorname{sSet}}(X_{\bullet}, \Omega_{\bullet})$ 

This cdga is quasi-isomorphic to the singular chain, and Sullivan proved that this functor is fully faithful, and we have a simple characterisation for its essentual image.

However, there is a way to avoid the usage of differential forms, and use the singular chain itself:  $C^*(X; \mathbb{Q})$  is indeed not strictly commutative, but it has the structure of an  $\mathbb{E}_{\infty}$ -ring. More precisely, we can use the following.

**Definition 9.** Let  $H\mathbb{Q} \in \text{Sp}$  be the spectrum representing rational cohomology. This is an  $\mathbb{E}_{\infty}$ -ring, so we can define the category  $\text{Mod}_{H\mathbb{Q}}$  of module spectra over  $\mathbb{Q}$ .

The important difference of rational homology from any other homology theories is the following observation:

**Definition 10.** For any spectrum E, we have the notion of E-acyclic spectra - Y s.t.  $E \otimes Y \simeq *$ , and E-local spectra which are those X s.t. for any Eacyclic Y and any  $f: Y \to X$ , f is nullhomotopic. Finally, a map  $f: X \to Y$ is E-equivalence if  $f \otimes E$  is an equivalence. A fundamental concept in stable homotopy theory is the notion of Bousfield localization: For any spectrum Ethere is a localization functor  $L_E$ :  $\operatorname{Sp} \to \operatorname{Sp}_E$  s.t.  $L_E(X)$  is E-local and  $X \to L_E(X)$  is E-equivalence. If E is a ring, for example if E = HR for some ordinary ring, then any E-module M is E-local, so  $\operatorname{Mod}_E \subset \operatorname{Sp}_E$ . The spectrum  $H\mathbb{Q}$  has two spetial properties: One is that  $H\mathbb{Q} \simeq L_{H\mathbb{Q}}\mathbb{S}$ , and the other is that this spectrum is "smashing", that is  $L_{H\mathbb{Q}}(X)$  is given by  $X \mapsto L_{H\mathbb{Q}}\mathbb{S} \otimes X$ . Combining these two observations, we obtain that  $H\mathbb{Q}$ localization is given by  $X \mapsto H\mathbb{Q} \otimes X$ . In particular, since  $L_E$  is an equivalence for *E*-local spectra, we obtain that any  $H\mathbb{Q}$ -local spectra X is also an  $H\mathbb{Q}$ module by  $L_{H\mathbb{Q}}^{-1}: L_{H\mathbb{Q}}X \simeq X \otimes H\mathbb{Q} \to X$ , so  $Mod_E \supset Sp_E$  and we get:

## Corollary 11. $\operatorname{Sp}_{H\mathbb{Q}} \simeq \operatorname{Mod}_{H\mathbb{Q}}$ .

Now we can reformulate the idea of rational homotopy in the following way: For any  $\infty$ -category  $\mathcal{C}$  and a set of morphisms W we can define the localization of  $\mathcal{C}$  WRT W, denoted by  $L_W : \mathcal{C} \to \mathcal{C}[W^{-1}]$ , which is the universal category such that all the morphisms in W are invertible.

Given a ring R, we have two notions of R-local homotopy theory:

- 1. The first is the localization of  $\mathcal{S}_{\geq 1}$  WRT  $\pi_* \otimes R$  equivalences
- 2. The second is the localization  $\operatorname{Sp}_{HR}$ . Since any connected spectrum is a commutative monoid in  $\mathcal{S}$ , we have a forgetful functor  $\Omega^{\infty} : \operatorname{Sp} \to \mathcal{S}$ , and this functor admits a left adjoint, called  $\Sigma^{\infty}_{+}$ . So using this functor, we can also define the localization of spaces WRT *HR*-local spectra. That

can also define the localization of spaces WRT HR-local spectra. That is, take the composition  $\Sigma_{+,\mathbb{Q}}^{\infty} : \mathcal{S}_{\geq 1} \xrightarrow{\Sigma_{+}^{\infty}} \operatorname{Sp} \xrightarrow{L_{H\mathbb{Q}}} \operatorname{Sp}_{H\mathbb{Q}} \simeq \operatorname{Mod}_{H\mathbb{Q}}$ . Since any space admits a diagonal map  $\Delta : X \to X \times X$ , this functor factors through



So we can also define the localization WRT  $(-) \otimes H\mathbb{Q}$ -equivalences.

The second localization is localization WRT  $H_*(-, \mathbb{Q})$  equivalences, so Serre's theorem is then that these two notions are equivalent, and we define:

**Definition 12.**  $S^{\mathbb{Q}}$  is the localization of  $S_{\geq 1}$  using any of the equivalent localizations above.

Serve's theorem also tells us that we can also take  $H^*(-,\mathbb{Q})$  instead of  $H_*(-,\mathbb{Q})$ , i.e. that the functor

$$\left[\Sigma^{\infty}_{+}\left(-\right), H\mathbb{Q}\right] : \left(\mathcal{S}^{\mathbb{Q}}\right)^{\mathrm{op}} \to \mathrm{CAlg}\left(\mathrm{Mod}_{H\mathbb{Q}}\right) \coloneqq \mathrm{CAlg}_{\mathbb{Q}}$$

is conservative. The question of rational homotopy theory is then whether or not this functor is also an embedding, and what is its essential image.

Remark 13. Even though the category  $\operatorname{CAlg}_{\mathbb{Q}}$  seems complicated and nonalgebraic, its actually equivalent to the catgory of  $\operatorname{cdga}_{\mathbb{Q}}$ , by

$$\left[\Sigma_{+}^{\infty}\left(-\right), H\mathbb{Q}\right] \to C^{*}\left(-;\mathbb{Q}\right)$$

so we indeed recover the classical rational homotopy theory. Therefore, for now on we will identify between the chain complex  $\mathbb{Q}$  concentrated in degree 0 and the spectrum  $H\mathbb{Q}$ , and the functor  $C^*(-;\mathbb{Q})$  with  $[\Sigma^{\infty}_+(-), H\mathbb{Q}]$ .

In general this functor is not fully faithful, due to finitness problems. However, if we restrict to finite-type spaces, we will get a fully faithful functor, with a concrete characterisation of its essential image:

**Theorem 14.** Let  $\mathcal{S}_{ft}^{\mathbb{Q}}$  be the category of rational spaces with  $\pi_n X$  finite dimensional  $\mathbb{Q}$ -vector spaces for  $n \geq 2$ . Then the functor

$$C^*\left(-;\mathbb{Q}\right): \left(\mathcal{S}_{\mathrm{ft}}^{\mathbb{Q}}\right)^{\mathrm{op}} \to \mathrm{CAlg}_{\mathbb{Q}}$$

is fully faithful, and its essential image is algebras A with the following properties:

- 1.  $\pi_i A$  is finite dimensional Q-vector spaces for i < -2
- 2.  $\pi_{-1}A = 0$
- 3.  $\pi_0 A \simeq \mathbb{Q}$
- 4.  $\pi_{>0}A = 0.$

The functor  $C^*(-;\mathbb{Q})$  admits a right adjoint  $A \mapsto \operatorname{Map}_{\operatorname{CAlg}_{\mathbb{Q}}}(A,\mathbb{Q})$ . The unit map is

$$\operatorname{eval}: X \to \operatorname{Map}_{\operatorname{CAlg}_{\mathbb{Q}}} \left( C^* \left( X; \mathbb{Q} \right), \mathbb{Q} \right)$$
$$x \mapsto \operatorname{eval}_x$$

and the counit map

$$A \to C^* \left( \operatorname{Map}_{\operatorname{CAlg}_{\mathbb{Q}}} \left( A, \mathbb{Q} \right); \mathbb{Q} \right) \simeq \operatorname{Map} \left( H \mathbb{Q}^A, H \mathbb{Q} \right)$$
$$a \mapsto \operatorname{eval}_a$$

In order to show that  $C^*(-;\mathbb{Q})$  is fully faithful, we have to show that the unit map is an equivalence. Before proving the theorem, we will need some calculations.

**Lemma 15.**  $C^*(K(\mathbb{Q}, n); \mathbb{Q})$  is the free commutative algebra on the generator  $\mathbb{Q}[-n]$ , i.e. an exterior algebra  $\Lambda^*(\mathbb{Q}[-n])$  for n odd and a polynomial algebra  $\mathbb{Q}[x]$  with |x| = n for n even. In general, for a finite dimensional  $\mathbb{Q}$ -vector space  $V, C^*(K(V, n); \mathbb{Q}) \simeq$ Free (V[-n]).

*Proof.* First we show that  $\pi_m (C^* (K(\mathbb{Q}, n))) = H^* (K(\mathbb{Q}, n)) \simeq \pi_m$  Free  $(\mathbb{Q}[-n])$ . We prove this by induction on n: For the case n = 1, the map  $\mathbb{Z} \to \mathbb{Q}$  induces a map  $B\mathbb{Z} \to B\mathbb{Q}$  which is an isomorphism on rational homotopy, hence an isomorphism on rational cohomology, and

$$H^{m}(B\mathbb{Z};\mathbb{Q}) \simeq H^{m}(S^{1};\mathbb{Q}) = \begin{cases} \mathbb{Q} & m = 0, 1\\ 0 & \text{otherwise} \end{cases} = \pi_{m}(\mathbb{Q} \oplus \mathbb{Q}[-1]) = \pi_{m}(\Lambda^{*}\mathbb{Q}[-1])$$

since for  $m \geq 2 \Lambda^m \mathbb{Q}[-1]$  is trivial: Its the quotient of  $\mathbb{Q} \simeq \mathbb{Q} \otimes_{\mathbb{Q}} \cdots \otimes_{\mathbb{Q}} \mathbb{Q}$  by the action of  $\Sigma_m$ , which acts by multiplication by the sign of the permutation, i.e. x = -x.

Now assume the claim holds for n-1. We have the path-loop fibration

$$\begin{array}{ccc} \Omega K\left(\mathbb{Q},n\right) & \longrightarrow PK\left(\mathbb{Q},n\right) & \longrightarrow K\left(\mathbb{Q},n\right) \\ \simeq & & \swarrow & \\ K\left(\mathbb{Q},n-1\right) & & \star \end{array}$$

We'll prove the case of n even, so by hypothesis,  $H^q(K(\mathbb{Q}, n-1))$  is  $\mathbb{Q}$  for q = 0, n-1 and zero otherwise, and we can use the Serre spectral sequence for this fibration to compute  $H^*K(\mathbb{Q}, n)$ : The  $E_2$  page is

$$E_2^{p,q} = H^p\left(K\left(\mathbb{Q},n\right); H^q\left(K\left(\mathbb{Q},n-1\right)\right)\right) \simeq H^p\left(K\left(\mathbb{Q},n\right); \mathbb{Q}\right) \otimes H^p\left(K\left(\mathbb{Q},n\right); \mathbb{Q}\right) \Rightarrow H^{p+q}\left(*\right)$$

and  $E_2^{p,q} = 0$  for  $q \neq 0, n-1$ , so the only non-zero differential is  $d_n : E_n^{p,n-1} \rightarrow E_n^{p+n,0}$ . Since  $E_\infty^{p,q} = 0$ ,  $d_n$  is an isomorphism. Take a generator  $x \in E_n^{0,n-1} \simeq H^{n-1}(K(\mathbb{Q}, n-1))$ , and let  $y = d_n(x) \in E_n^{n,0} \simeq H^n(K(\mathbb{Q}, n))$ . Then y generates  $H^n(K(\mathbb{Q}, n))$ , and xy generates  $E_n^{n,n-1} \simeq H^n(K(\mathbb{Q}, n)) \otimes H^{n-1}(K(\mathbb{Q}, n-1))$ . Then again,  $d_n(xy)$  generate  $E_n^{2n,0} \simeq H^{2n}(K(\mathbb{Q}, n))$ , and since  $d_n$  is a derivation  $d_n(xy) = d_n(x) y + xd_n(y) = y^2$ . We continue this way to show that  $y^k$  generates  $H^{kn}(K(\mathbb{Q}, n))$ , i.e.  $H^{kn}(K(\mathbb{Q}, n)) \simeq \mathbb{Q}[y]$ .

Thus,  $\pi_*C^*(K(\mathbb{Q}, n); \mathbb{Q}) \simeq \pi_*$  Free  $(\mathbb{Q}[-n])$ . Choose an element  $\alpha \in \pi_*C^*(K(\mathbb{Q}, n); \mathbb{Q})$  that maps to a generator of  $\pi_*$  Free  $(\mathbb{Q}[-n])$ . Then  $\alpha$  factors as a map  $\mathbb{Q}[-n] \to C^*(K(\mathbb{Q}, n); \mathbb{Q})$ , and thus extends to a map Free  $(\mathbb{Q}[-n]) \to C^*(K(\mathbb{Q}, n); \mathbb{Q})$ . This map is an isomorphism on homotopy, and thus an isomorphism.  $\square$ 

As a consequence of this computation, we can actually compute now the rational homotopy groups of spheres!

Claim 16. For n odd,  $\pi_k \left( S_{\mathbb{Q}}^n \right) \simeq \begin{cases} \mathbb{Q} & k = n \\ 0 & \text{otherwise} \end{cases}$ , and for n even,  $\pi_k \left( S_{\mathbb{Q}}^n \right) \simeq \begin{cases} \mathbb{Q} & k = n, 2n-1 \\ 0 & \text{otherwise} \end{cases}$ . In particular,  $\pi_k \left( S^n \right)$  is finite for  $k \neq n$  if n is odd and for

 $\vec{k} \neq n, 2n-1$  if n is even.

Proof. For any n,  $H^n(-,\mathbb{Q})$  is represented by  $K(\mathbb{Q}, n)$ . In particular  $\mathbb{Q} \simeq H^n(S^n;\mathbb{Q}) \simeq [S^n, K(\mathbb{Q}, n)] = \pi_n(K(\mathbb{Q}, n))$ . Choose some  $f: S^n \to K(\mathbb{Q}, n)$  representing a non-zero element (hence, a generator). By Hurewicz, f is an isomorphism on  $H^n(K(\mathbb{Q}, n);\mathbb{Q}) \to H^n(S^n;\mathbb{Q})$ . So, for n odd we are done: f is an isomorphism on cohomology, hence on homotopy, so  $\pi_*S^n_{\mathbb{Q}} \simeq \pi_*K(\mathbb{Q}, n)$ .

For *n* even, we can write  $H^*(K(\mathbb{Q}, n); \mathbb{Q}) \simeq \mathbb{Q}[x]$  for  $x \in H^{\tilde{n}}(K(\mathbb{Q}, n); \mathbb{Q}) \simeq \mathbb{Q}$  a generator. Then  $x^2 \in H^{2n}(K(\mathbb{Q}, n); \mathbb{Q}) \simeq [K(\mathbb{Q}, n), K(\mathbb{Q}, 2n)]$ . Chose a representative  $g: K(\mathbb{Q}, n) \to K(\mathbb{Q}, 2n)$  for  $x^2$ , and let  $F \to K(\mathbb{Q}, n)$  be its

fiber. Since  $\pi_n(K(\mathbb{Q},2n)) = 0, f: S^n \to K(\mathbb{Q},n)$  factors through the fiber

$$F \xrightarrow{} K(\mathbb{Q}, n) \xrightarrow{g} K(\mathbb{Q}, 2n)$$

Since  $\pi_n(f)$  is an isomorphism so is  $\pi_n(h)$ , and thus by Hurewicz on  $H^n(h)$ . Its possible to show that the induced map on cohomology is a cofiber sequence, i.e.

$$H^*(F;\mathbb{Q}) \simeq \mathbb{Q}[x] / (x^2)$$

so *h* is an isomorphism on cohomology, hence on  $\pi_* \otimes \mathbb{Q}$ . In particular,  $S^n_{\mathbb{Q}} \simeq F$ , and using the long exact sequence in homotopy we obtain  $\pi_k \left( S^n_{\mathbb{Q}} \right) \simeq \begin{cases} \mathbb{Q} & k = n, 2n-1 \\ 0 & \text{otherwise} \end{cases}$ .

Now we go back to prove 14:

Claim 17. The unit map eval :  $X \to \operatorname{Map}_{\operatorname{CAlg}_{\mathbb{Q}}}(C^*(X; \mathbb{Q}), \mathbb{Q})$  is an isomorphism.

*Proof.* We use the following sequence of arguments:

First, we reduce to the case where X is n-truncated for some n. This is done by using  $X_{\leq n}$ , the  $n^{\text{th}}$  Postnikov space, i.e. a space with  $X \to X_{\leq n}$  is an isomorphism on  $\pi_{\leq n}$  and  $\pi_{>n}(X_{\leq n}) = 0$ . Since  $X \simeq \lim_{\leftarrow} X_n$ , and X is simply connected,  $C^*(X; \mathbb{Q}) \simeq \lim_{\to} C^*(X_{\leq n}; \mathbb{Q})$ . Thus its suffices to show the claim for  $X_{\leq n}$ , so we can use an inductive argument on n, where the base case n = 1 is obvious since X is simply connected.

Next, we use the fact that at least for X simply connected of finite type, the fiber sequence

$$K(\pi_n X, n)$$

$$\downarrow$$

$$X_{\leq n} \longrightarrow X_{\leq n-1}$$

is classifies by a pullback square



(in general it always classified by B Aut  $(K(\pi_n X, n)) \simeq$  Aut  $(\pi_n X) \rtimes K(\pi_n X, n+1)$ ). Then we use the fact that at least for finite type simply connected spaces, the functor  $C^*\left(-;\mathbb{Q}\right)$  sends cofiber sequences to fiber sequences, i.e. we have a pushout diagram

$$\begin{array}{c} C^*\left(K\left(\pi_nX,n+1\right);\mathbb{Q}\right) \longrightarrow \mathbb{Q} \\ & \swarrow \\ & \downarrow \\ C^*\left(X_{\leq n-1};\mathbb{Q}\right) \longrightarrow C^*\left(X_{\leq n};\mathbb{Q}\right) \end{array}$$

Now by the inductive step  $X_{\leq n-1} \simeq \operatorname{Map}_{\operatorname{Calg}_{\mathbb{Q}}}(C^*(X_{\leq n-1};\mathbb{Q}),\mathbb{Q})$ , and by lemma ??

$$\begin{aligned} \operatorname{Map}_{\operatorname{Calg}_{\mathbb{Q}}}\left(C^{*}\left(X_{\leq n-1},\mathbb{Q}\right),\mathbb{Q}\right) &\simeq \operatorname{Map}_{\operatorname{Calg}_{\mathbb{Q}}}\left(\operatorname{Free}\left(\mathbb{Q}\left[-n-1\right]\right),\mathbb{Q}\right) \\ &\simeq \operatorname{Map}_{\operatorname{Mod}_{\mathbb{Q}}}\left(\Sigma^{-n-1}H\mathbb{Q},H\mathbb{Q}\right) \\ &\simeq \operatorname{Map}_{\operatorname{Mod}_{\mathbb{Q}}}\left(H\mathbb{Q},\Sigma^{n+1}H\mathbb{Q}\right) \\ &\{\star\} &\simeq \operatorname{Map}_{\operatorname{Mod}_{\mathbb{Q}}}\left(\mathbb{S},\Sigma^{n+1}H\mathbb{Q}\right) \\ &\simeq \operatorname{Map}_{\operatorname{Mod}_{\mathbb{Q}}}\left(\Sigma^{\infty}_{+}\left(\star\right),\Sigma^{n+1}H\mathbb{Q}\right) \\ &\simeq \operatorname{Map}_{\mathcal{S}}\left(\star,\Omega^{\infty}\Sigma^{n+1}H\mathbb{Q}\right) \\ &\simeq \Omega^{\infty}\Sigma^{n+1}H\mathbb{Q} \\ &\simeq K\left(\pi_{n}X,n+1\right) \end{aligned}$$

where  $\star$  is since any map into an  $H\mathbb{Q}$ -local spectra factors through the localization, and  $L_{H\mathbb{Q}}\mathbb{S} \simeq H\mathbb{Q}$ . Thus this holds also for  $X_{\leq n}$ .

**Corollary 18.** For any  $X, Y \in \mathcal{S}^{\mathbb{Q}}_{\mathrm{ft}}$ ,

$$\operatorname{Map}_{\mathcal{S}^{\mathbb{Q}}}\left(Y,X\right)\simeq\operatorname{Map}_{\operatorname{Calg}_{\mathbb{Q}}}\left(C^{*}\left(X;H\mathbb{Q}\right),C^{*}\left(Y;\mathbb{Q}\right)\right)$$

*i.e.*  $C^*(-;\mathbb{Q})$  is fully-faithful.

We now want to describe the essential image, and show that its precisely algebras A that satisfies conditions 1 - 4.

First, let A be in the image. Conditions 2-4 are obvious. In order to show that  $C^n(X;\mathbb{Q})$  are finite dimensional we use again an inductive argument and the esplicit characterisation of the cofibers  $X_{\leq n} \to X_{\leq n-1} \to K(\pi_n X, n+1)$ . Its remains to prove that a cdga satisfying conditions 1-4 is equivalent to the cohomology of a rational space. Let  $A \in \operatorname{CAlg}_{\mathbb{Q}}$ . If A where indeed of the form  $C^*(X;\mathbb{Q})$ , then we could recover X as  $\operatorname{Map}_{\operatorname{CAlg}_{\mathbb{Q}}}(A,\mathbb{Q})$ , and in particular  $X \in S^{\mathbb{Q}}_{\operatorname{ft}}$ , but since we don't know yet that A is in the essential image of  $C^*(-;\mathbb{Q})$ , even if X is indeed a finite type rational space we still don't know its corresponding to A. The idea is then to look at  $X = \operatorname{Map}(A, \mathbb{Q})$  as the rational point of the functor

$$\mathcal{X}_A = \operatorname{Map}_{\operatorname{CAlg}_{\mathbb{O}}}(A, -) : \operatorname{CAlg}_{\mathbb{O}}^{\geq 0} \to \mathcal{S}$$

For a general field the restricted Yoneda

$$\mathcal{X}_{(-)}: \left(\mathrm{CAlg}_k^{\leq 0}\right)^{\mathrm{op}} \to \mathrm{Fun}\left(\mathrm{CAlg}_k^{\geq 0}, \mathcal{S}\right)$$

is not an embedding. However, for a field of characteristic zero this is indeed an embedding. The important properties of such functors are:

1. Since we are mapping from a coconnective algebra to connective algebras, all the information is in its values on discrete algebras (and its value on any connective algebra is its left Kan extension). i.e. the composition

$$\mathcal{X}_{(-)}: \left(\mathrm{CAlg}_{\mathbb{Q}}^{\leq 0}\right)^{\mathrm{op}} \to \mathrm{Fun}\left(\mathrm{CAlg}_{\mathbb{Q}}^{\geq 0}, \mathcal{S}\right) \to \mathrm{Fun}\left(\mathrm{CAlg}_{\mathbb{Q}}^{0}, \mathcal{S}\right)$$

is also an embedding.

- 2. If A is -n truncated, then the values of  $\mathcal{X}_A$  are *n*-connected.
- 3. For all *i*, the functor  $R \mapsto \pi_i \mathcal{X}_A(R)$  restricted to  $\operatorname{CAlg}_{\mathbb{Q}}^0$  is given by  $R \mapsto R \otimes_{\mathbb{Q}} V$  for a finite-dimensional  $\mathbb{Q}$  vector space *V*.

In particular, from property 2 and 3 we deduce that indeed the rational points are rational spaces of finite type  $\mathcal{X}_A(\mathbb{Q}) \in \mathcal{S}_{\mathrm{ff}}^{\mathbb{Q}}$ .

Now in order to prove that A is in the essential image of  $C^*(-;\mathbb{Q})$ , we use define  $A' := C^*(\mathcal{X}_A(\mathbb{Q});\mathbb{Q})$ . Then we want to show that  $A' \simeq A$ . We have the following diagram:



and we wish to show that the composition  $A \to A'$  is an equivalence. Note that u is the unit map of the adjunction  $\left(\mathcal{S}_{\mathrm{ft}}^{\mathbb{Q}}\right)^{\mathrm{op}} \rightleftharpoons \mathrm{CAlg}_{\mathbb{Q}}^{\leq 1}$ , hence an equivalence. Since  $\pi_i \mathcal{X}_{(-)}(R)$  are  $\mathbb{Q}$  are finite  $\mathbb{Q}$ -vector spaces for any connective R, this implies that  $\mathcal{X}_A \to \mathcal{X}_{A'}$  is also an equivalence  $\mathcal{X}_A \to \mathcal{X}_{A'}$  and hence  $A \xrightarrow{\sim} A$ .

This observation now gives us a hint about how to extend the embedding to all rational spaces, and not just finite type spaces: We define the subcategory  $\operatorname{Fun}\left(\operatorname{CAlg}_{\mathbb{Q}}^{\geq 0}, \mathcal{S}\right) \supset \operatorname{RType}$  spanned by those functors satisfying properties 1-3, except that we don't demant V to be finite-dimensional in 3. Then its possible to show that taking rational points induces an equivalence:

$$(-)(\mathbb{Q}): \operatorname{Fun}\left(\operatorname{CAlg}_{\mathbb{Q}}^{\geq 0}, \mathcal{S}\right) \supset \operatorname{RType} \to \mathcal{S}^{\mathbb{Q}}$$