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In general, we have two 
lassi
al algebrai
 invariants of a spa
e: Its (
o)homology

and its homotopy groups. Taking 
ohomology X 7→ H∗X is easy to 
al
ulate,

but losees a lot of information, and π∗X is di�
ult to 
ompute. However, it

turns out that all the 
omplexity is in the torsion part: if we work rationaly,

the story is di�erent.

De�nition 1. A spa
e X is 
alled rational if π∗X has the stru
ture of a Q-

ve
tor spa
e.

Furthermore, for any spa
e X , we 
an de�ne its rationalization X → XQ,

a universal spa
e with homotopy groups π∗ (X) ⊗ Q
∼
−→ π∗ (XQ). We'll give a

pre
ise de�nition later. For example, a model for the rational sphere Sn
Q is

Sn
Q ≃





∨

k≥1

Sn
k



 ∪





⊔

k≥2

Dn
k





where the atta
hing maps ∂Dn
k+1 → Sn

k ∨ Sn
k+1 are 1Sn

k
− (k + 1)Sn

k+1

, whi
h

represents the element

1
k+1 in Sn

Q. We de�ne the 
ateogry TopQ as the 
ategory

of simply 
onne
ted rational topologi
al spa
es, and the fun
tor (−)Q : Top →

TopQ as the rationalization fun
tor. Then the idea is that the 
ategory TopQ

is simple, in the sense that the 
ohomologi
al information is enough to re
over

the spa
e and its homotopy groups.

The �rst hint is by what is 
alled Hurevi
h mod C.

De�nition 2. A sub
ategory C ⊂ Ab is 
alled a Serre 
lass if for any short

exa
t sequen
e

0 → M ′ → M → M ′′ → 0

M ∈ C i� M ′,M ′′ ∈ C, and C is 
losed under tensor produ
t and TorZ1 (−,−).

Example 3. The following are examples of Serre 
lasses:

1. Finite abelian groups.

2. Finitely generated abelian groups.

3. Torsion abelian groups
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The last example is the one important for us.

Fa
t 4. For any pair of simply 
onne
ted spa
es (X,Y ), πk (X,Y ) ∈ C∀k < n
i� Hn (X,Y ) ∈ C∀k < n.

De�nition 5. A morphism f : A → B between abelian groups is 
alled C-
monomorphism (epimorphism) if ker f (coker f) belongs to C. f is C-isomorphism.

Using this de�nitions, we 
an state two of basi
 theorems of rational homo-

topy theory, stated originaly by Serre(?):

Theorem 6. (Hurewi
z Theorem mod C) Let C be a Serre' 
lass of abelian

groups, and let X be a simply 
onne
ted spa
e. Suppose Hk (X) ∈ C for all

k < n (or equivalently πk (X)). Then there is an exa
t sequen
e:

K → πnX → HnX → C → 0

su
h that K,C ∈ C. In parti
ular, πnX → HnX is a C-isomorphism.

Proof. Let {X≤n} be the Postnikov tower of X (that is, a sequen
e of spa
es

X≤n → X≤n−1 → · · · su
h that X ≃ lim
←−

X≤n, π>nX≤n = 0 and π≤nX
∼
−→

π≤nX≤n). Then using the exa
t sequen
es of the pair (Xn−1, X), together with
the standard (and relative) Hurewi
z homomorphisms:

0 = πn+1 (Xn−1)

��

// πn+1 (Xn−1, X)

≃

��

≃ // πn (Xn)

��

// πn (Xn−1) = 0

��

// πn (Xn−1, X)

��
C ∋ Hn+1 (Xn−1) // Hn+1 (Xn−1, X) // Hn (Xn) // Hn (Xn−1) ∈ C // Hn (Xn−1, X)

Theorem 7. (Whitehead mod C) Let C be a Serre 
lass, f : X → Y a map

between simply 
onne
ted spa
es. Then the following are equivalent:

1. π≤n (f) is a C-isomorphism and πn+1 (f) is a C-epimorphism.

2. H≤n (f) is a C-isomorphism and Hn+1 (f) is a C-epimorphism.

Proof. Using the long exa
t sequen
es for the pair (Y,X) we see that 
ondition
1 is equivalent to πk (Y,X) ∈ C while 2 is equivalent to Hk (Y,X) ∈ C.

Combining these two theorems, we 
on
lude:

Corollary 8. For a map f : X → Y between simply 
onne
ted spa
es,π∗f is an

equivalen
e i� H∗ (f,Q) is an isomorphism i� H∗ (f,Q) is an equivalen
e.

So we see that H∗ remembers some of the information about equivalen
es (if

a map 
omes from a topologi
al map then it remembers the information about

equivalen
es) and we may ask what is the missing in�rmation and whether or

2



not we 
an en
ode it using a stru
ture or some modi�
ation to the 
ohomology

groups.

So only the information about H∗ is not enough, even if we remember the

ring stru
ture. However, if we remmeber the stru
ture of the 
hain 
omplex

itself, a 
hain with a di�erential and the 
up produ
t, then the answer will be

positive. However, the problem is that C∗ (X ;Q) with the 
up produ
t is not


ommutative and asso
iative on the nose.

The 
alssi
al solution to this problem was to repla
e C∗ (X ;Q) with a quasi-

isomorphi
 
hain 
omplex that has a stri
t 
dga stru
ture: Sullivan de�ned su
h

a model using lo
al di�erential forms: for every singular simplex ∆n → X we


an assosiate the group of di�erential forms on ∆n
with some 
ompatibility

between a form on a simplex and forms on its boundary, and together with the

lo
al di�erential of Ω• (∆
n), this will have the stru
ture of a 
dga.

Pre
isely, for a spa
e X we have the presheaf X• : ∆
op → Set of the singular

simpli
es, and the presheaf

Ω• : ∆
op → cdgaQ

fortegful

−−−−−→ Set

. Then the di�erential forms on X will be natural transformations X• → Ω•.
One 
an show that the set of natural transformations has a stru
ture of a 
dga,

by applying the operations pointwise (or by Kan extension). Thus we obtain a

fun
tor

(

TopQ
)op

→ cdgaQ

X 7→ HomsSet (X•,Ω•)

This 
dga is quasi-isomorphi
 to the singular 
hain, and Sullivan proved that this

fun
tor is fully faithful, and we have a simple 
hara
terisation for its essentual

image.

However, there is a way to avoid the usage of di�erential forms, and use the

singular 
hain itself: C∗ (X ;Q) is indeed not stri
tly 
ommutative, but it has

the stru
ture of an E∞-ring. More pre
isely, we 
an use the following.

De�nition 9. Let HQ ∈ Sp be the spe
trum representing rational 
ohomology.

This is an E∞-ring, so we 
an de�ne the 
ategory ModHQ of module spe
tra

over Q.

The important di�eren
e of rational homology from any other homology

theories is the following observation:

De�nition 10. For any spe
trum E, we have the notion of E-a
y
li
 spe
tra
- Y s.t. E ⊗ Y ≃ ∗, and E-lo
al spe
tra whi
h are those X s.t. for any E-
a
y
li
 Y and any f : Y → X , f is nullhomotopi
. Finally, a map f : X → Y
is E-equivalen
e if f ⊗ E is an equivalen
e. A fundamental 
on
ept in stable

homotopy theory is the notion of Bous�eld lo
alization: For any spe
trum E
there is a lo
alization fun
tor LE : Sp → SpE s.t. LE (X) is E-lo
al and
X → LE (X) is E-equivalen
e. If E is a ring, for example if E = HR for some

ordinary ring, then any E-module M is E-lo
al, so ModE ⊂ SpE .
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The spe
trum HQ has two spetial properties: One is that HQ ≃ LHQS,

and the other is that this spe
trum is �smashing�, that is LHQ (X) is given

by X 7→ LHQS ⊗ X . Combining these two observations, we obtain that HQ

lo
alization is given by X 7→ HQ⊗X . In parti
ular, sin
e LE is an equivalen
e

for E-lo
al spe
tra, we obtaing that any HQ-lo
al spe
tra X is also an HQ-

module by L−1HQ
: LHQX ≃ X ⊗HQ → X , so ModE ⊃ SpE and we get:

Corollary 11. SpHQ ≃ ModHQ.

Now we 
an reformulate the idea of rational homotopy in the following way:

For any ∞-
ategory C and a set of morphisms W we 
an de�ne the lo
alization

of C WRT W , denoted by LW : C → C
[

W−1
]

, whi
h is the universal 
ategory

su
h that all the morphisms in W are invertible.

Given a ring R, we have two notions of R-lo
al homotopy theory:

1. The �rst is the lo
alization of S≥1 WRT π∗ ⊗R equivalen
es

2. The se
ond is the lo
alization SpHR. Sin
e any 
onne
ted spe
trum is a


ommutative monoid in S, we have a forgetful fun
tor Ω∞ : Sp → S, and
this fun
tor admits a left adjoint, 
alled Σ∞+ . So using this fun
tor, we


an also de�ne the lo
alization of spa
es WRT HR-lo
al spe
tra. That

is, take the 
omposition Σ∞+,Q
: S≥1

Σ∞

+

−−→ Sp
LHQ

−−−→ SpHQ ≃ ModHQ. Sin
e

any spa
e admits a diagonal map ∆ : X → X × X , this fun
tor fa
tors

through

S≥1
(−)⊗HQ//

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙ coCAlg (ModHQ)

��
ModHQ

So we 
an also de�ne the lo
alization WRT (−)⊗HQ-equivalen
es.

The se
ond lo
alization is lo
alization WRT H∗ (−,Q) equivalen
es, so Serre's

theorem is then that these two notions are equivalent, and we de�ne:

De�nition 12. SQ
is the lo
alization of S≥1 using any of the equivalent lo
al-

izations above.

Serre's theorem also tells us that we 
an also take H∗ (−,Q) instead of

H∗ (−,Q), i.e. that the fun
tor

[

Σ∞+ (−) , HQ
]

:
(

SQ
)op

→ CAlg (ModHQ) := CAlgQ

is 
onservative. The question of rational homotopy theory is then whether or

not this fun
tor is also an embedding, and what is its essential image.

Remark 13. Even though the 
ategory CAlgQ seems 
ompli
ated and non-

algebrai
, its a
tually equivalent to the 
atgory of cdgaQ, by

[

Σ∞+ (−) , HQ
]

→ C∗ (−;Q)

4



so we indeed re
over the 
lassi
al rational homotopy theory. Therefore, for now

on we will identify between the 
hain 
omplex Q 
on
entrated in degree 0 and

the spe
trum HQ, and the fun
tor C∗ (−;Q) with
[

Σ∞+ (−) , HQ
]

.

In general this fun
tor is not fully faithful, due to �nitness problems. How-

ever, if we restri
t to �nite-type spa
es, we will get a fully faithful fun
tor, with

a 
on
rete 
hara
terisation of its essential image:

Theorem 14. Let SQ
ft be the 
ategory of rational spa
es with πnX �nite dimen-

sional Q-ve
tor spa
es for n ≥ 2. Then the fun
tor

C∗ (−;Q) :
(

SQ
ft

)op

→ CAlgQ

is fully faithful, and its essential image is algebras A with the following proper-

ties:

1. πiA is �nite dimensional Q-ve
tor spa
es for i < −2

2. π−1A = 0

3. π0A ≃ Q

4. π>0A = 0.

The fun
tor C∗ (−;Q) admits a right adjoint A 7→ MapCAlgQ
(A,Q). The

unit map is

eval : X → MapCAlgQ
(C∗ (X ;Q) ,Q)

x 7→ evalx

and the 
ounit map

A → C∗
(

MapCAlgQ (A,Q) ;Q
)

≃ Map
(

HQA, HQ
)

a 7→ evala

In order to show that C∗ (−;Q) is fully faithful, we have to show that the

unit map is an equivalen
e. Before proving the theorem, we will need some


al
ulations.

Lemma 15. C∗ (K (Q, n) ;Q) is the free 
ommutative algebra on the generator

Q [−n], i.e. an exterior algebra Λ∗ (Q [−n]) for n odd and a polynomial algebra

Q [x] with |x| = n for n even. In general, for a �nite dimensional Q-ve
tor spa
e

V , C∗ (K (V, n) ;Q) ≃ Free (V [−n]).

Proof. First we show that πm (C∗ (K (Q, n))) = H∗ (K (Q, n)) ≃ πm Free (Q [−n]).
We prove this by indu
tion on n: For the 
ase n = 1, the map Z → Q indu
es

a map BZ → BQ whi
h is an isomorphism on rational homotopy, hen
e an

isomorphism on rational 
ohomology, and

Hm (BZ;Q) ≃ Hm
(

S1;Q
)

=

{

Q m = 0, 1

0 otherwise

= πm (Q⊕Q [−1]) = πm (Λ∗Q [−1])
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sin
e for m ≥ 2 ΛmQ [−1] is trivial: Its the quotient of Q ≃ Q ⊗Q · · · ⊗Q Q by

the a
tion of Σm, whi
h a
ts by multipli
ation by the sign of the permutation,

i.e. x = −x.
Now assume the 
laim holds for n− 1. We have the path-loop �bration

ΩK (Q, n) //

≃

��

PK (Q, n) //

≃

��

K (Q, n)

K (Q, n− 1) ⋆

We'll prove the 
ase of n even, so by hypothesis, Hq (K (Q, n− 1)) is Q for

q = 0, n− 1 and zero otherwise, and we 
an use the Serre spe
tral sequen
e for

this �bration to 
ompute H∗K (Q, n): The E2 page is

Ep,q
2 = Hp (K (Q, n) ;Hq (K (Q, n− 1))) ≃ Hp (K (Q, n) ;Q)⊗Hp (K (Q, n) ;Q) ⇒ Hp+q (∗)

and Ep,q
2 = 0 for q 6= 0, n− 1, so the only non-zero di�erential is dn : Ep,n−1

n →
Ep+n,0

n . Sin
e Ep,q
∞ = 0, dn is an isomorphism. Take a generator x ∈ E0,n−1

n ≃
Hn−1 (K (Q, n− 1)), and let y = dn (x) ∈ En,0

n ≃ Hn (K (Q, n)). Then y gener-

atesHn (K (Q, n)), and xy generatesEn,n−1
n ≃ Hn (K (Q, n))⊗Hn−1 (K (Q, n− 1)).

Then again, dn (xy) generate E2n,0
n ≃ H2n (K (Q, n)), and sin
e dn is a deriva-

tion dn (xy) = dn (x) y + xdn (y) = y2. We 
ontinue this way to show that yk

generates Hkn (K (Q, n)), i.e. Hkn (K (Q, n)) ≃ Q [y].
Thus, π∗C

∗ (K (Q, n) ;Q) ≃ π∗ Free (Q [−n]). Choose an element α ∈ π∗C
∗ (K (Q, n) ;Q)

that maps to a generator of π∗ Free (Q [−n]). Then α fa
tors as a map Q [−n] →
C∗ (K (Q, n) ;Q), and thus extends to a map Free (Q [−n]) → C∗ (K (Q, n) ;Q).
This map is an isomorphism on homotopy, and thus an isomorphism.

As a 
onsequen
e of this 
omputation, we 
an a
tually 
ompute now the

rational homotopy groups of spheres!

Claim 16. For n odd, πk

(

Sn
Q

)

≃

{

Q k = n

0 otherwise

, and for n even, πk

(

Sn
Q

)

≃

{

Q k = n, 2n− 1

0 otherwise

. In parti
ular, πk (S
n) is �nite for k 6= n if n is odd and for

k 6= n, 2n− 1 if n is even.

Proof. For any n, Hn (−,Q) is represented by K (Q, n). In parti
ular Q ≃
Hn (Sn;Q) ≃ [Sn,K (Q, n)] = πn (K (Q, n)). Choose some f : Sn → K (Q, n)
representing a non-zero element (hen
e, a generator). By Hurewi
z, f is an

isomorphism on Hn (K (Q, n) ;Q) → Hn (Sn;Q). So, for n odd we are done: f
is an isomorphism on 
ohomology, hen
e on homotopy, so π∗S

n
Q ≃ π∗K (Q, n).

For n even, we 
an writeH∗ (K (Q, n) ;Q) ≃ Q [x] for x ∈ Hn (K (Q, n) ;Q) ≃
Q a generator. Then x2 ∈ H2n (K (Q, n) ;Q) ≃ [K (Q, n) ,K (Q, 2n)]. Chose

a representative g : K (Q, n) → K (Q, 2n) for x2
, and let F → K (Q, n) be its
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�ber. Sin
e πn (K (Q, 2n)) = 0, f : Sn → K (Q, n) fa
tors through the �ber

F // K (Q, n)
g // K (Q, 2n)

Sn

h

cc❍
❍
❍
❍
❍

f

OO

Sin
e πn (f) is an isomorphism so is πn (h), and thus by Hurewi
z on Hn (h).
Its possible to show that the indu
ed map on 
ohomology is a 
o�ber sequen
e,

i.e.

H∗ (F ;Q) ≃ Q [x] /
(

x2
)

so h is an isomorphism on 
ohomology, hen
e on π∗⊗Q. In parti
ular, Sn
Q ≃ F ,

and using the long exa
t sequen
e in homotopy we obtain πk

(

Sn
Q

)

≃

{

Q k = n, 2n− 1

0 otherwise

.

Now we go ba
k to prove 14:

Claim 17. The unit map eval : X → MapCAlgQ
(C∗ (X ;Q) ,Q) is an isomor-

phism.

Proof. We use the following sequen
e of arguments:

First, we redu
e to the 
ase where X is n-trun
ated for some n. This is

done by using X≤n, the nth
Postnikov spa
e, i.e. a spa
e with X → X≤n is an

isomorphism on π≤n and π>n (X≤n) = 0. Sin
e X ≃ lim
←−

Xn, and X is simply


onne
ted, C∗ (X ;Q) ≃ lim
−→

C∗ (X≤n;Q). Thus its su�
es to show the 
laim for

X≤n, so we 
an use an indu
tive argument on n, where the base 
ase n = 1 is

obvious sin
e X is simply 
onne
ted.

Next, we use the fa
t that at least for X simply 
onne
ted of �nite type, the

�ber sequen
e

K (πnX,n)

��
X≤n // X≤n−1

is 
lassi�es by a pullba
k square

X≤n

��

// ⋆

��
X≤n−1 // BK (πnX,n) ≃ K (πnX,n+ 1)

(in general it always 
lassi�ed byBAut (K (πnX,n)) ≃ Aut (πnX)⋊K (πnX,n+ 1)).
Then we use the fa
t that at least for �nite type simply 
onne
ted spa
es, the
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fun
tor C∗ (−;Q) sends 
o�ber sequen
es to �ber sequen
es, i.e. we have a

pushout diagram

C∗ (K (πnX,n+ 1) ;Q) //

��

Q

��
C∗ (X≤n−1;Q) // C∗ (X≤n;Q)

Now by the indu
tive step X≤n−1 ≃ MapCalgQ
(C∗ (X≤n−1;Q) ,Q), and by

lemma ??

MapCalgQ
(C∗ (X≤n−1,Q) ,Q) ≃ MapCalgQ

(Free (Q [−n− 1]) ,Q)

≃ MapModQ

(

Σ−n−1HQ, HQ
)

≃ MapModQ

(

HQ,Σn+1HQ
)

{⋆} ≃ MapModQ

(

S,Σn+1HQ
)

≃ MapModQ

(

Σ∞+ (∗) ,Σn+1HQ
)

≃ MapS
(

∗,Ω∞Σn+1HQ
)

≃ Ω∞Σn+1HQ

≃ K (πnX,n+ 1)

where ⋆ is sin
e any map into an HQ-lo
al spe
tra fa
tors through the lo
aliza-

tion, and LHQS ≃ HQ. Thus this holds also for X≤n.

Corollary 18. For any X,Y ∈ SQ
ft ,

MapSQ (Y,X) ≃ MapCalgQ
(C∗ (X ;HQ) , C∗ (Y ;Q))

i.e. C∗ (−;Q) is fully-faithful.

We now want to des
ribe the essential image, and show that its pre
isely

algebras A that satis�es 
onditions 1− 4.
First, let A be in the image. Conditions 2-4 are obvious. In order to show

that Cn (X ;Q) are �nite dimensional we use again an indu
tive argument and

the espli
it 
hara
terisation of the 
o�bers X≤n → X≤n−1 → K (πnX,n+ 1).
Its remains to prove that a 
dga satisfying 
onditions 1-4 is equivalent to the


ohomology of a rational spa
e. Let A ∈ CAlgQ. If A where indeed of the

form C∗ (X ;Q), then we 
ould re
over X as MapCAlgQ
(A,Q), and in parti
u-

lar X ∈ SQ
ft , but sin
e we don't know yet that A is in the essential image of

C∗ (−;Q), even if X is indeed a �nite type rational spa
e we still don't know its


orresponding to A. The idea is then to look at X = Map (A,Q) as the rational
point of the fun
tor

XA = MapCAlgQ
(A,−) : CAlg≥0Q → S
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For a general �eld the restri
ted Yoneda

X(−) :
(

CAlg≤0k

)op

→ Fun
(

CAlg≥0k ,S
)

is not an embedding. However, for a �eld of 
hara
teristi
 zero this is indeed

an embedding. The important properties of su
h fun
tors are:

1. Sin
e we are mapping from a 
o
onne
tive algebra to 
onne
tive algebras,

all the information is in its values on dis
rete algebras (and its value on

any 
onne
tive algebra is its left Kan extension). i.e. the 
omposition

X(−) :
(

CAlg≤0Q

)op

→ Fun
(

CAlg≥0Q ,S
)

→ Fun
(

CAlg0Q,S
)

is also an embedding.

2. If A is −n trun
ated, then the values of XA are n-
onne
ted.

3. For all i, the fun
tor R 7→ πiXA (R) restri
ted to CAlg0Q is given by R 7→
R⊗Q V for a �nite-dimensional Q ve
tor spa
e V .

In parti
ular, from property 2 and 3 we dedu
e that indeed the rational points

are rational spa
es of �nite type XA (Q) ∈ SQ
ft .

Now in order to prove that A is in the essential image of C∗ (−;Q), we use
de�ne A′ := C∗ (XA (Q) ;Q). Then we want to show that A′ ≃ A. We have the

following diagram:

XA

##●
●●

●●
●●

●●
XA′

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚

XA (Q)

''PP
PP

PP
PP

PP
PP

u //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ XA′ (Q) = Map (C∗ (XA (Q) ,Q))

A

GG
✎
✎
✎
✎
✎
✎
✎
✎
✎
✎
✎
✎
✎
✎
✎

A′ = C∗ (XA (Q))

@@������������������

and we wish to show that the 
omposition A → A′ is an equivalen
e. Note that

u is the unit map of the adjun
tion

(

SQ
ft

)op

⇄ CAlg<1
Q , hen
e an equivalen
e.

Sin
e πiX(−) (R) are Q are �nite Q-ve
tor spa
es for any 
onne
tive R, this

implies that XA → XA′
is also an equivalen
e XA → XA′

and hen
e A
∼
−→ A.

This observation now gives us a hint about how to extend the embedding to

all rational spa
es, and not just �nite type spa
es: We de�ne the sub
ategory

Fun
(

CAlg≥0Q ,S
)

⊃ RType spanned by those fun
tors satisfying properties 1-3,

ex
ept that we don't demant V to be �nite-dimensional in 3. Then its possible

to show that taking rational points indu
es an equivalen
e:

(−) (Q) : Fun
(

CAlg≥0Q ,S
)

⊃ RType → SQ
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