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In general, we have two classical algebraic invariants of a space: Its (co)homology

and its homotopy groups. Taking cohomology X +— H*X is easy to calculate,
but losees a lot of information, and 7,X is difficult to compute. However, it
turns out that all the complexity is in the torsion part: if we work rationaly,
the story is different.

Definition 1. A space X is called rational if 7,X has the structure of a Q-
vector space.

Furthermore, for any space X, we can define its rationalization X — Xg,

a universal space with homotopy groups 7. (X) ® Q = . (Xg). We'll give a
precise definition later. For example, a model for the rational sphere Sg is

Sg~|\Vse|ull|]Dr

k>1 k>2
where the attaching maps 0D}, — Sy V S}, are 1gn — (k + 1)5;Z‘+1’ which
represents the element k+L1 in Sg. We define the cateogry Top? as the category

of simply connected rational topological spaces, and the functor (—)Q : Top —

TopQ as the rationalization functor. Then the idea is that the category TopQ
is simple, in the sense that the cohomological information is enough to recover
the space and its homotopy groups.

The first hint is by what is called Hurevich mod C.

Definition 2. A subcategory C C Ab is called a Serre class if for any short
exact sequence

0O—-M —-M-—-M' =0

M e Ciff M',M" € C, and C is closed under tensor product and Tor% (—,—).

Example 3. The following are examples of Serre classes:

1. Finite abelian groups.
2. Finitely generated abelian groups.

3. Torsion abelian groups



The last example is the one important for us.

Fact 4. For any pair of simply connected spaces (X,Y), m, (X,Y) € CVk <n
iff Hy (X,Y) € CVk < n.

Definition 5. A morphism f : A — B between abelian groups is called C-
monomorphism (epimorphism) if ker f (coker f) belongs to C. f is C-isomorphism.

Using this definitions, we can state two of basic theorems of rational homo-
topy theory, stated originaly by Serre(?):

Theorem 6. (Hurewicz Theorem mod C) Let C be a Serre’ class of abelian
groups, and let X be a simply connected space. Suppose Hy (X) € C for all
k <n (or equivalently m (X)). Then there is an exact sequence:

K—->mnX-—->H,X—-C-—=0

such that K,C € C. In particular, 7, X — H,X is a C-isomorphism.

Proof. Let {X<,} be the Postnikov tower of X (that is, a sequence of spaces
X<n = X<p_1 — --- such that X ~ limX<,, msnX<p = 0 and 7<, X —
< < A < < <

T<nX<n). Then using the exact sequences of the pair (X,,—1, X), together with
the standard (and relative) Hurewicz homomorphisms:

0= Tn41 (anl) > Tn41 (anle) ;' T (Xn — > Tn (anl) =0——- Tn, (anla X)

| | l | l

C > Hn+1 (anl) —— llp41 (anla ) (Xn (anl) S C—— Hn (anle)
O

Theorem 7. (Whitehead mod C) Let C be a Serre class, f : X — Y a map
between simply connected spaces. Then the following are equivalent:

1. <y (f) is a C-isomorphism and wp11 (f) is a C-epimorphism.
2. Hep (f) is a C-isomorphism and H,y1 (f) is a C-epimorphism.

Proof. Using the long exact sequences for the pair (Y, X) we see that condition
1 is equivalent to 7 (Y, X) € C while 2 is equivalent to Hy (Y, X) € C. O

Combining these two theorems, we conclude:

Corollary 8. For a map f: X — Y between simply connected spaces,m. f is an
equivalence iff H, (f,Q) is an isomorphism iff H* (f,Q) is an equivalence.

So we see that H* remembers some of the information about equivalences (if
a map comes from a topological map then it remembers the information about
equivalences) and we may ask what is the missing infirmation and whether or



not we can encode it using a structure or some modification to the cohomology
groups.

So only the information about H* is not enough, even if we remember the
ring structure. However, if we remmeber the structure of the chain complex
itself, a chain with a differential and the cup product, then the answer will be
positive. However, the problem is that C* (X;Q) with the cup product is not
commutative and associative on the nose.

The calssical solution to this problem was to replace C* (X; Q) with a quasi-
isomorphic chain complex that has a strict cdga structure: Sullivan defined such
a model using local differential forms: for every singular simplex A" — X we
can assosiate the group of differential forms on A™ with some compatibility
between a form on a simplex and forms on its boundary, and together with the
local differential of 2 (A™), this will have the structure of a cdga.

Precisely, for a space X we have the presheaf X, : A°? — Set of the singular
simplices, and the presheaf

fortegful
Qe 1 AP — cdgag LOMeB T, Set,

. Then the differential forms on X will be natural transformations X, — €,.

One can show that the set of natural transformations has a structure of a cdga,

by applying the operations pointwise (or by Kan extension). Thus we obtain a

functor

op
(TopQ) — cdgag
X — Homgget (Xo, Q)

This cdga is quasi-isomorphic to the singular chain, and Sullivan proved that this
functor is fully faithful, and we have a simple characterisation for its essentual
image.

However, there is a way to avoid the usage of differential forms, and use the
singular chain itself: C* (X;Q) is indeed not strictly commutative, but it has
the structure of an E,-ring. More precisely, we can use the following.

Definition 9. Let HQ € Sp be the spectrum representing rational cohomology.
This is an E-ring, so we can define the category Modgg of module spectra
over Q.

The important difference of rational homology from any other homology
theories is the following observation:

Definition 10. For any spectrum FE, we have the notion of E-acyclic spectra
-Y st. E®Y ~ %, and E-local spectra which are those X s.t. for any FE-
acyclic Y and any f:Y — X, f is nullhomotopic. Finally, a map f : X - Y
is F-equivalence if f ® F is an equivalence. A fundamental concept in stable
homotopy theory is the notion of Bousfield localization: For any spectrum F
there is a localization functor Ly : Sp — Spg s.t. Lg(X) is E-local and
X — Lg (X) is F-equivalence. If E is a ring, for example if £ = HR for some
ordinary ring, then any E-module M is E-local, so Modg C Spyg.



The spectrum HQ has two spetial properties: One is that HQ ~ LpqgS,
and the other is that this spectrum is “smashing”, that is Lyg (X) is given
by X — LpgS ® X. Combining these two observations, we obtain that HQ
localization is given by X — HQ® X. In particular, since Lg is an equivalence
for E-local spectra, we obtaing that any HQ-local spectra X is also an HQ-
module by Lﬁb i LroX X ® HQ — X, so Modg D Spg and we get:

Corollary 11. Spyg ~ Modug.

Now we can reformulate the idea of rational homotopy in the following way:
For any co-category C and a set of morphisms W we can define the localization
of C WRT W, denoted by Ly : C — C [W‘l], which is the universal category
such that all the morphisms in W are invertible.

Given a ring R, we have two notions of R-local homotopy theory:

1. The first is the localization of S»1 WRT 7, ® R equivalences

2. The second is the localization Spyp. Since any connected spectrum is a
commutative monoid in S, we have a forgetful functor 2 : Sp — S, and
this functor admits a left adjoint, called X%°. So using this functor, we
can also define the localization of spaces WRT H R-local spectra. That

»ee L
is, take the composition ¥ : >4 5 8p Spug =~ Modpq. Since
any space admits a diagonal map A : X — X x X, this functor factors
through

Sy — M8 O Alg (Mod o)

MOdHQ
So we can also define the localization WRT (—) ® HQ-equivalences.

The second localization is localization WRT H, (—, Q) equivalences, so Serre’s
theorem is then that these two notions are equivalent, and we define:

Definition 12. SY is the localization of S>; using any of the equivalent local-
izations above.

Serre’s theorem also tells us that we can also take H* (—, Q) instead of
H, (—,Q), i.e. that the functor

[25° (=), HQ)] : (89" — CAlg (Modg) = CAlg,

is conservative. The question of rational homotopy theory is then whether or
not this functor is also an embedding, and what is its essential image.

Remark 13. Even though the category CAlgg seems complicated and non-
algebraic, its actually equivalent to the catgory of cdgag, by

(2 (=), HQ] = C* (- Q)



so we indeed recover the classical rational homotopy theory. Therefore, for now
on we will identify between the chain complex Q concentrated in degree 0 and
the spectrum HQ, and the functor C* (—; Q) with [X5° (), HQ].

In general this functor is not fully faithful, due to finitness problems. How-
ever, if we restrict to finite-type spaces, we will get a fully faithful functor, with
a concrete characterisation of its essential image:

Theorem 14. Let S;%’ be the category of rational spaces with 7w, X finite dimen-
sional Q-vector spaces for n > 2. Then the functor
op

C* (= Q) : (sli(f) — CAlgg

is fully faithful, and its essential image is algebras A with the following proper-
ties:

1. w;A is finite dimensional Q-vector spaces for i < —2

2. 7T_1A =0
3. mpA~Q
4. 7T>0A =0.

The functor C* (—; Q) admits a right adjoint A — Mapcag, (A,Q). The
unit map is

eval : X' — Mapc ), (C*(X;Q),Q)

T — eval,

and the counit map

A= € (Mapcay, (4,Q):Q) = Map (HQ*, HQ)
a — eval,

In order to show that C*(—;Q) is fully faithful, we have to show that the
unit map is an equivalence. Before proving the theorem, we will need some
calculations.

Lemma 15. C* (K (Q,n);Q) is the free commutative algebra on the generator
Q[—n], i.e. an exterior algebra A* (Q[—n]) for n odd and a polynomial algebra
Q [x] with |x| = n for n even. In general, for a finite dimensional Q-vector space
V, C* (K (V,n);Q) ~ Free (V [-n]).

Proof. First we show that 7, (C* (K (Q,n))) = H* (K (Q,n)) ~ mp, Free (Q[—n]).
We prove this by induction on n: For the case n = 1, the map Z — Q induces

a map BZ — BQ which is an isomorphism on rational homotopy, hence an
isomorphism on rational cohomology, and

H™ (BZ;Q) ~ H™ (5::Q) = {@ =0l (@8 Q1) = m (AQ[-1))

0 otherwise



since for m > 2 A™Q[—1] is trivial: Its the quotient of Q ~ Q ®q - ®g Q by
the action of ¥,,, which acts by multiplication by the sign of the permutation,
ie. r=—x.

Now assume the claim holds for n — 1. We have the path-loop fibration

QK (Q,n) —— PK (Q,n) ——= K (Q,n)

"

K(Qmn-1) *

We’ll prove the case of n even, so by hypothesis, H? (K (Q,n — 1)) is Q for
q = 0,n — 1 and zero otherwise, and we can use the Serre spectral sequence for
this fibration to compute H*K (Q, n): The E5 page is

B = HP (K Q) HY (K (Qun — 1) = HY (K (Q.n): QH? (K (Qn):Q) = H"* (+)

and E5'? =0 for ¢ # 0,n — 1, so the only non-zero differential is d,, : EE"~1 —
EPt:0 Since EX: =0, d,, is an isomorphism. Take a generator z € EO" 1 ~
H" 1 (K (Q,n—1)),andlet y = d, (z) € E™° ~ H" (K (Q,n)). Then y gener-
ates H" (K (Q,n)), and zy generates E"" 1 ~ H" (K (Q,n))@H" ! (K (Q,n — 1)).
Then again, d,, (zy) generate E2"° ~ H?" (K (Q,n)), and since d,, is a deriva-
tion d,, (zy) = d,, (¥) y + zd,, (y) = y>. We continue this way to show that y*
generates H*" (K (Q,n)), i.e. H* (K (Q,n)) ~ Q[y]-
Thus, 7,.C* (K (Q,n); Q) ~ 7, Free (Q [-n]). Choose an element o € 7,.C* (K (Q,n);Q)

that maps to a generator of 7, Free (Q [-n]). Then « factors as a map Q [—n] —

C* (K (Q,n);Q), and thus extends to a map Free (Q [-n]) — C* (K (Q,n);Q).
This map is an isomorphism on homotopy, and thus an isomorphism. O

As a consequence of this computation, we can actually compute now the
rational homotopy groups of spheres!

. Q k=n
Cl 16. F dd, SZ) ~ , and f , S ~
aim or n o wk( Q) {0 otherwise and for n even m( Q)
Q k=n,2n-1
0 otherwise
k # n,2n —1if n is even.

. In particular, my (S™) is finite for k # n if n is odd and for

Proof. For any n, H" (—,Q) is represented by K (Q,n). In particular Q ~
H™(5™;Q) ~ [S™, K (Q,n)] = m, (K (Q,n)). Choose some f : S™ — K (Q,n)
representing a non-zero element (hence, a generator). By Hurewicz, f is an
isomorphism on H" (K (Q,n);Q) — H™ (5™ Q). So, for n odd we are done: f
is an isomorphism on cohomology, hence on homotopy, so m.Sg ~ m. K (Q,n).
For n even, we can write H* (K (Q,n);Q) ~ Q[z]forz € H" (K (Q,n);Q) ~
Q a generator. Then 22 € H?>" (K (Q,n);Q) ~ [K (Q,n), K (Q,2n)]. Chose
a representative g : K (Q,n) — K (Q,2n) for 22, and let ' — K (Q,n) be its



fiber. Since 7, (K (Q,2n)) =0, f:S™ — K (Q, n) factors through the fiber

F§—>K(Q,n)—g>K(Q,2n)

N h Tf
AN
AN

S’ﬂ

Since m, (f) is an isomorphism so is m, (h), and thus by Hurewicz on H™ (h).
Its possible to show that the induced map on cohomology is a cofiber sequence,
ie.
H* (F;Q)~Qlx]/ (3:2)
$0 h is an isomorphism on cohomology, hence on 7, ® Q. In particular, Sg ~ F,
Q k=n,2n-1
0 otherwise ’
O

and using the long exact sequence in homotopy we obtain 7 (S§) ~ {

Now we go back to prove 14:

Claim 17. The unit map eval : X — Mapcay,, (C*(X;Q),Q) is an isomor-
phism.

Proof. We use the following sequence of arguments:

First, we reduce to the case where X is n-truncated for some n. This is
done by using X<, the n'® Postnikov space, i.e. a space with X — X<, is an
isomorphism on 7<, and 7>, (X<,) = 0. Since X ~ limX,,, and X is simply

- - <
connected, C* (X; Q) ~ limC* (X<,; Q). Thus its suffices to show the claim for
L <
X<p, so we can use an inductive argument on n, where the base case n =1 is
obvious since X is simply connected.

Next, we use the fact that at least for X simply connected of finite type, the
fiber sequence

K (m,X,n)

|

X<n —=X<n 1

is classifies by a pullback square

Xgn *

|

X<p-1—— BK (m, X,n) ~ K (1, X,n+1)

(in general it always classified by B Aut (K (7, X, n)) ~ Aut (7, X )< K (7, X, n + 1)).
Then we use the fact that at least for finite type simply connected spaces, the



functor C* (—; Q) sends cofiber sequences to fiber sequences, i.e. we have a
pushout diagram

C* (K (mpX,n+1);Q) ———=Q

| |

C* (X<pn-1;Q) C* (X<n;Q)

Now by the inductive step X<n-1 =~ Mapg,,, (C* (X<n-1;Q),Q), and by
lemma ?7?
(Free (Q[-n —1]),Q)
, (ET"THQ, HQ)
~ Mapyjoq, (HQ, S HQ)

{x} ~ Mapysoq, (S, 2" HQ)
~ Mapyoq, (25 (), 2" HQ)
~ Mapg (*, QOOE"HHQ)
~ QY"1 HQ
~ K (m,X,n+1)

MapCang (C* (XSn—lu Q) 7@) = MapCalg

~ Mapyioq

where * is since any map into an HQ-local spectra factors through the localiza-
tion, and LpgS ~ HQ. Thus this holds also for X<,,. O

Corollary 18. For any X,Y € SS,

Mapse (Y, X) ~ Mapg,,, (C* (X; HQ),C™ (Y;Q))
i.e. C*(—;Q) is fully-faithful.

We now want to describe the essential image, and show that its precisely
algebras A that satisfies conditions 1 — 4.

First, let A be in the image. Conditions 2-4 are obvious. In order to show
that C™ (X; Q) are finite dimensional we use again an inductive argument and
the esplicit characterisation of the cofibers X<, = X<,—1 — K (m,X,n +1).
Its remains to prove that a cdga satisfying conditions 1-4 is equivalent to the
cohomology of a rational space. Let A € CAlgy. If A where indeed of the
form C* (X;Q), then we could recover X as Mapcaig, (4,Q), and in particu-

lar X € Sft, but since we don’t know yet that A is in the essential image of
C* (—;Q), even if X is indeed a finite type rational space we still don’t know its
corresponding to A. The idea is then to look at X = Map (A, Q) as the rational

point of the functor

Xa = Mapgay,, (A4,—): CAlgSO -8



For a general field the restricted Yoneda
o
Xy (0AlgE®)” — Fun (CAlg?", )

is not an embedding. However, for a field of characteristic zero this is indeed
an embedding. The important properties of such functors are:

1. Since we are mapping from a coconnective algebra to connective algebras,
all the information is in its values on discrete algebras (and its value on
any connective algebra is its left Kan extension). i.e. the composition

Xy s (0a1gs®) " = Fun (CAlgs", S) — Fun (CAIgY, S)

is also an embedding.
2. If A is —n truncated, then the values of X4 are n-connected.

3. For all 4, the functor R — m; X4 (R) restricted to CAlg% is given by R
R ®q V for a finite-dimensional Q vector space V.

In particular, from property 2 and 3 we deduce that indeed the rational points
are rational spaces of finite type X4 (Q) € 88 .

Now in order to prove that A is in the essential image of C* (—; Q), we use
define A" := C* (X4 (Q);Q). Then we want to show that A’ ~ A. We have the
following diagram:

(Q) = Map (C* (¥4 (Q),Q))

A AT =C" (X4 (Q))

and we wish to show that the composition A — A’ is an equivalence. Note that
op

u is the unit map of the adjunction (Sg) = CAlg&l, hence an equivalence.

Since m;X(_y (R) are Q are finite Q-vector spaces for any connective R, this

implies that X4 — X4 is also an equivalence X4 — X4 and hence A = A.
This observation now gives us a hint about how to extend the embedding to
all rational spaces, and not just finite type spaces: We define the subcategory

Fun (CAlgSO, 8) D RType spanned by those functors satisfying properties 1-3,

except that we don’t demant V to be finite-dimensional in 3. Then its possible
to show that taking rational points induces an equivalence:

(=) (Q) : Fun (CAlgSO, 8) > RType — S



