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1 Zeroth K-group

Let R be a ring, and consider the collection of isomorphism classes of finitely generated
projective R-modules. The direct sum makes into a commutative monoid.

Definition 1.1. We define the 0-th algebraic K group of R as the group-completion

K0(R) := (ProjR/ ∼, ⊕)gpc ∈ Ab.

Here the operation of group-completion is the left adjoint of the inclusion

Ab ↪→ CMon.

Example 1.2. In a PID (e.g. fields and Z) projective implies free, thus

K0(R) ≃ Ngpc ≃ Z.

Example 1.3. More generally, for a Dedekind domain we have

K0(R) ≃ Z ⊕ Pic(R).

2 Homotopy theory

In our construction of K0(R), we took the isomorphism classes of modules, neglecting
the interesting information encoded in their automorphisms, i.e. in the groupoid Proj≃R.
This is analgoues to excluding stacky phenomena. As the notation suggests, there is an
infinite series of groups Kn(R), originally constructed by Quillen. Importantly, these K
groups are in fact the homotopy groups of a much richer object, called a spectrum, which
behaves much better as a whole. It is somewhat difficult to give a formal definition of
spectra, but I will give two sets of intuitions.
Another source of groupoids is homotopy types. Given a topological space X, we can
approximate it to 0-th order by its set of connected componenets. As a better approxi-
mation, we can consider the fundamental groupoid Π1(X), whose objects are the points
x ∈ X, and morphisms are paths [0, 1] → X up to homotopy between them (note that
the automorphisms of x ∈ X are precisely the fundamental group π1(X, x)). We may
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continue, and consider the 2-groupoid Π2(X), whose objects are x ∈ X, morphisms are
[0, 1] → X, and morphisms between morphisms are homotopies [0, 1]2 → X up to homo-
topy between them. This process continues, and we can define the ∞-groupoid Π∞(X),
capturing the homotopy type of X.
Going back to our case, note that on the groupoid Proj≃R, we have the direct sum
operation, in the sense that we can also form the direct sum of maps. In a similar way,
we may consider commutative monoid, and abelian groups, in ∞-groupoids. With this
in mind we let

Sp≥0 := Ab(Grpd∞).
This is very closely related to derived categories:

• The derived category D(Z) has a subcategory D(Z)≥0 of non-negative objects.
The shift operation on the latter is only invertible from one side, and inverting it
recovers D(Z). In exactly the same way, we can form Sp from Sp≥0.

• Given an abelian group A, we have corresponding object in D(Z) by placing it in
degree 0, and similary for Sp.

• In the other direction, given A ∈ D(Z) we can form the (co)homology groups
H∗(A), and similarly given A ∈ Sp we can form its homotopy groups π∗(A).

• D(Z) has a derived tensored product. Similarly, Sp has a tensor product with unit
S. This allows us to define (commutative) ring spectra, modules over them, etc.

• For an (ordinary) ring R, we get a corresponding ring spectrum, and we have
ModR(Sp) ≃ D(R). From this perspective spectra can be thought of as providing
a base S sitting even before Z.

3 Algebraic K-theory

Consider the groupoid Proj≃R as an ∞-groupoid, together with the direct sum operation.
Applying the left adjoint of the inclusion

Sp≥0 := Ab(Grpd∞) ↪→ CMon(Grpd∞)

we arrive at the full definition.

Definition 3.1. We define the algebraic K-theory spectrum of R to be

K(R) := (Proj≃R, ⊕)gpc ∈ Sp≥0,

and we let Kn(R) := πn(K(R)).

A point that we will return to later is that this definition extends as-is to ring spectra.
However, one may wonder why should we care about ∞-groupoids, when Proj≃R is just
a groupoid. The reason is that, just like a derived functor, the group completion may
spread over all degrees. In general, K groups are notoriously difficult to calculate.
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Example 3.2 (Bass–Milnor–Serre). For a number field L

K1(OL) ≃ O×
L .

Example 3.3. We have

K1(Z) = Z× = Z/2, K2(Z) = Z/2, K3(Z) = Z/48, K4(Z) = 0.

The Vandiver conjecture is equivalent to K4n(Z) = 0, and the second case K8(Z) = 0
was only proven in 2018.

This exemplifies the intricate arithmetic infromation encoded by K groups, for instance,
they and are closely related to special values of zeta functions. As another manifestation
of this principle, we have the now-proven Quillen–Lichtenbaum conjecture, a consequence
of Voevodsky–Rost’s proof of the Bloch–Kato conjecture.

Theorem 3.4. Let R be a suitable ring (regular Noetherian finitely generated) in which
p is invertible. Then, there is a spectral sequence with

E∗∗
2 = H∗

et(R;Z/p(∗
2))

which converges to π∗(K(R)/p) for ∗ ≫ 0.

Remark 3.5. Note that it is important to take mod p before taking π∗ (similar to taking
derived cokernel).

Loosely speaking, there is some relation between K-theory and etale cohomology. This
statement, however, is somewhat odd, with the connection holding only for ∗ ≫ 0,
leading us to our next topic.

4 Descent

As we have seen, algebraic K-theory is a fairly intricate invariant, and is difficult to
compute. One way to approach such calculations is via descent.

Theorem 4.1 (Thomason). K-theory satisfies Zariski descent. That is, for affine
schemes X = U ∪ V , we have a pullback square in spectra

K(X) K(U)

K(V ) K(U ∩ V )

⌟

Remark 4.2. Note that the pullback must be taken in spectra (like a derived pullback),
as with taking mod p above. It is not true that each Kn satisfies descent. In more down
to earth terms though, this gives rise to a long exact sequence on K groups.
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In fact Thomason proved more than that: K-theory satisfies Nisnevich descent. The
Nisnevich topology is intermediate between Zariski and etale. A map ∐

Ui → X is a
Nisnevich cover if it is an etale cover and for each point x ∈ X there exists some i and
u ∈ Ui s.t. k(x) ∼−−→ k(u) is an isomorphism. Notably, K-theory does not satisfy etale
descent, precisely because it fails to satisfy Galois descent. That is, there examples of a
G-Galois extension L → L′ such that

K(L) −−→ K(L′)hG

is not an isomorphism. This ties back to the pecuilarities of the Quillen–Lichtenbaum
conjecture, which can be remedied using chromatic homotopy theory.

5 Chromatic localizations

A very useful paradigm in ordinary algebra is studying questions one prime at a time
and then gluing the results. For simplicity, let us work p-locally, then this decomposition
is controlled by the fairly simple topological space

Spec(Z(p)) = {(0) → (p)}.

For exampe, a p-local abelian group A can be recovered from its rationalization and
p-completion glued along the rationalization of the p-completion

A = AQ ×
(Ap)Q

Ap.

Surprisingly, this picture refines in spectra – this is the subject of chromatic homotopy
theory. The p-completion further decomposes into infinitely many “new characteristics”

Spec(S(p)) = {(0) → (p, 1) → · · · → (p, n) → · · · → (p, ∞)}.

In particular, there is a localization LT(n) : Sp → SpT(n) for every height n ≥ 0, where
the case of height is 0 is rationalization, while the higher heights are refinements of the
p-completion (we remark that there is also some information not captured by any of the
finite heights, but for our purposes it will negligible).
I will not give too many details, but let me comment that this comes from a very
close connection between spectra and (1-dimensional) formal groups, which over Fp

are classified by a number called the height, due to deep insights of Quillen, Morava,
Ravenel and Devinatz–Hopkins–Smith, among many others. We have the following other
manifestation of this connection.

Example 5.1. The Lubin–Tate deformation theory of formal groups can be carried out
in spectra: given formal group G of height n over a field L, there is a commutative
ring spectrum E(L, G), whose π0 is the ordinary Lubin–Tate ring, which is T(n)-local
E(L, G) = LT(n)E(L, G).
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This is a new phenomenon, not available in ordinary or derived algebra, but only over
spectra. Given an abelian group A considered as a spectrum A ∈ Sp, we have LT(n)A = 0
for all n ≥ 1. Note that this in particular shows that the chromatic localizations are
insensitive to some form of p-torsion information – nevertheless, as we shall soon see,
this difference will not be important for our puroses.
Going back to algebraic K-theory, we have the following fundamental theorem.

Theorem 5.2 (Mithcell). For any ring R and n ≥ 2 we have LT(n)K(R) = 0.

Furthermore, Thomason showed that the T(1)-local part is precisely the etale part,
relevant for Quillen–Lichtenbaum.

Theorem 5.3 (Thomason). The functor LT(1)K(−) satisfies Galois, hence etale, de-
scent. In fact, it is the etale sheafification for p-invertible rings, for which we have a
spectral sequences

E∗∗
2 = H∗

et(R;Zp(∗
2)) =⇒ π∗(LT(1)K(R)).

Thus the Quillen–Lichtenbaum conjecture can be reformulated as saying that

π∗(K(R)) −−→ π∗(LT(1)K(R))

is an isomorphism for ∗ ≫ 0.

6 Redshift

We have seen various phenomena at case of ordinary rings, namely rings of height 0
(as LT(n)R = 0 for n ≥ 1). Base on this case, as well as some computational evidence
for ring spectra of height 1, in the early 2000’s Ausoni–Rognes proposed a cluster of
conjectures, now known as the redshift conjecture. These roughly say that K-theory
increases chromatic height by 1, and that one T(n + 1)-localize K-theory should have
better descent properties. These have seen tremendous breakthroughs in recent years
by works of various groups, including Land–Mathew–Meier–Tamme, Clausen–Mathew–
Naumann–Noel and Burklund–Schlank–Yuan.

Theorem 6.1. K-theory increases chromatic height by one: let R be a T(n)-local com-
mutative ring spectrum then

LT(n+1)K(R) ̸= 0, LT(m)K(R) = 0 ∀m ≥ n + 2.

Theorem 6.2. T(n + 1)-localized K-theory satisfies Galois descent for finite p-groups.
That is, let R → S be a Galois extension of T(n)-local rings with finite p-group Galois
group G, then

LT(n+1)K(R) ∼−−→ LT(n+1)K(S)hG.

5



7 Cyclotomic redshift and the telescope conjecture

Finally, I’d like to discuss joint work with Carmeli, Schlank and Yanovski. Our main
theorem is an extension of this last result in a somewhat abstract direction, replacing
the Galois group by a Galois n-groupoid. Instead of describing it, I will formulate
some consequences that are somewhat more tangible, concerning analogues of cyclotomic
extension.
Given a commutative ring R, we may consider the cyclotomic extension R[ωpk ]. We note
that this construction works well away from p, i.e. when p is invertible in R, for instance
it is a (Z/pk)×-Galois extension, while for Fp-algebras it is totally ramified, and behaves
completely differently. Surprisingly, while T(n)-local spectra are in a sense at the prime
p, they still have a working theory of cyclotomic extensions, due to Carmeli–Schlank–
Yanovski. That is, for a T(n)-local commutative ring spectrum R, there is a (Z/pk)×-
Galois extension R[ω(n)

pr ], called the height n cyclotomic extension. Furthermore, these
support a theory analogues to discrete fourier transform, and Kummer theory. One of
our main results is the following.
Theorem 7.1 (B.M.–Carmeli–Schlank–Yanovski). T(n + 1)-localized K-theory sends
height n cyclotomic extension to height n + 1 cyclotomic extensions, i.e.

LT(n+1)K(R[ω(n)
pr ]) ≃ LT(n+1)K(R)[ω(n+1)

pr ]

together with the (Z/pk)×-action.

Note that (Z/pk)× is not a p-group (e.g. |(Z/p)×| = p − 1), and hence doesn’t fit in the
previous theorem, and in particular gives the first prime-to-p example of Galois descent
for T(n + 1)-localized K-theory.
Finally, we discuss the case of the infinite cyclotomic extension R[ω(n)

p∞ ], which is a
profinite Galois extension for Z×

p . Unlike in ordinary algebra, in homotopy theory,
profinite Galois extension may fail to be faithful – a form of hyperdescent. In particular,
it is not immediate that R ∼−−→ R[ω(n)

p∞ ]hZ×
p .

There is an (a priori) further condition on R, called being K(n)-local, meaning that R
is not only T(n)-local but also local with respect to the Lubin–Tate spectrum E(L, G).
For such rings, we can show that the infinite cyclotomic extension is faithful, and we
prove the following result.
Theorem 7.2 (B.M.–Carmeli–Schlank–Yanovski). For a T(n)-local commutative ring
spectrum R we have

LK(n+1)K(R) ≃ LK(n+1)K(R[ω(n)
p∞ ])hZ×

p .

Particularly, this provides an instance of hyperdescent for algebraic K-theory.
Finally, in the 70’s, Ravenel posed the telescope conjecture, stating that any T(n)-local
spectrum is already K(n)-local. This was finally resolved in the negative, as Burklund–
Hahn–Levy–Schlank gave a counter example to the analogue theorem of ours for T(n+1)-
localized spectra.
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