Complex oriented rotation invariance in algebraic K-theory

Shay Ben-Moshe

20/11/2025

Plan

- Commutativity and strict commutativity
- Picard and strict Picard
- Units in algebraic K-theory
- Strict triviality in algebraic K-theory

Commutativity in ordinary algebra

ullet For elements of an abelian group $x,y\in A$

$$x \cdot y = y \cdot x$$

• In particular, for x = y

$$x \cdot x = x \cdot x$$

nothing much to say

Commutativity in higher algebra

ullet For objects in a category $X,Y\in \mathcal{C}$

$$B_{X,Y} \colon X \times Y \simeq Y \times X, \qquad B_{X,Y}(x,y) = (y,x)$$

• In particular, for X = Y

$$B_{X,X}$$
: $X \times X \simeq X \times X$, $B_{X,X}(x_1, x_2) = (x_2, x_1)$

• More generally, Σ_n acts on X^n

Commutativity in higher algebra (cont.)

• Given an abelian ∞ -group, i.e. a connective spectrum (A,\otimes) , for any $X\in A$ have

$$\Sigma_n \curvearrowright X^{\otimes n} \in A$$

• Element $X \in A \iff \mathsf{map} \ \mathsf{of} \ \mathsf{spectra} \ \mathbb{S} \to A$ encoding all Σ_n -action via

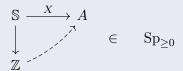
$$\mathbb{S} \simeq \operatorname{Fin}^{\operatorname{gpc}} \simeq (\bigsqcup \operatorname{B}\Sigma_n)^{\operatorname{gpc}}$$

Strict commutativity

• To say that $X \in A$ "commutes with itself" is extra structure: trivialization of $\Sigma_n \curvearrowright X^{\otimes n}$

Definition

The structure of a *strict element* on $X \in A$ is a factorization



These assemble into a connective spectrum $A_{\mathbb{Z}} := \text{hom}(\mathbb{Z}, A)$

Strict commutativity (cont.)

- Distinction does not exist in ordinary algebra since $\mathbb Z$ is both the free group and the free abelian group
- \mathbb{Z} is the free ∞ -group, i.e. \mathbb{E}_1 -group, while $\mathbb S$ is the free abelian ∞ -group, i.e. connective spectrum
- Element $X \in A \iff \mathbb{E}_1$ -map $\mathbb{Z} \to A$, and a strict structure is an \mathbb{E}_{∞} -lift

Example

The neutral element $\mathbf{1}{\in}A$ canonically lifts to a strict element

Picard

ullet For a commutative ring spectrum R, consider the Picard

$$\operatorname{pic}(R) := \operatorname{Mod}_R(\operatorname{Sp})^{\simeq,\times},$$

maximal groupoid on X such that $\exists Y$ with $X \otimes Y \simeq R$, forming a connective spectrum with respect to \otimes

Glued from

$$\pi_0(\operatorname{pic}(R)) \simeq \{X \mid \exists Y : X \otimes Y \simeq R\}, \qquad \tau_{\geq 1}(\operatorname{pic}(R)) \simeq R^{\times}$$

• Note for ordinary R, we also have $\Sigma^n R \in \pi_0(\operatorname{pic}(R))$

$$\pi_0(\operatorname{pic}(R)) \simeq \operatorname{pic}^{\heartsuit}(R) \oplus \mathbb{Z}^{\operatorname{Spec}(R)}$$

Picard (cont.)

Example $(R = \mathbb{Z})$

$$\pi_0(\operatorname{pic}(\mathbb{Z})) = \{\Sigma^n \mathbb{Z}\} = \mathbb{Z}$$

$$\pi_1(\operatorname{pic}(\mathbb{Z})) \simeq \mathbb{Z}^{\times} \simeq \mathbb{Z}/2$$

$$\operatorname{pic}(\mathbb{Z}) \xrightarrow{} 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z} \xrightarrow{/2} \mathbb{Z}/2 \xrightarrow{\operatorname{Sq}^2} \Sigma^2 \mathbb{Z}/2$$

Strict Picard

Proposition

For an ordinary commutative ring, any ordinary Picard element $X \in \operatorname{pic}^{\heartsuit}(R)$ lifts to a strict Picard element $X \in \operatorname{pic}(R)_{\mathbb{Z}}$

Proof.

Locally on $\operatorname{Spec}(R)$, it is the unit

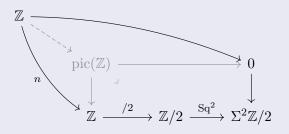
Strict Picard (cont.)

Proposition

For an ordinary commutative ring, $\Sigma^n R \in \operatorname{pic}(R)$ lifts to a strict Picard element if n is even, and doesn't (in general) if n is odd

Proof.

Suffices $R=\mathbb{Z}$, want to factor $\mathbb{S} \to \mathrm{pic}(\mathbb{Z})$ through $\mathbb{S} \to \mathbb{Z}$



Picard of commutative ring spectra

Proposition

$$\pi_0(\operatorname{pic}(\mathbb{S})) = \{\Sigma^n \mathbb{S}\} \simeq \mathbb{Z}$$

ullet $\Sigma \mathbb{S}$ is not strict, by the case of \mathbb{Z}

Theorem (Lurie (2015))

There is an \mathbb{E}_2 -lift of $\Sigma^2 \mathbb{S}$

$$\mathbb{Z} \longrightarrow \operatorname{pic}(\mathbb{S}) \in \operatorname{Grp}_{\mathbb{E}_2}(\mathbb{S})$$

• No \mathbb{E}_3 -lift, in particular, no strict lift

Picard of commutative ring spectra (cont.)

• Since $\mathrm{Aut}_{\mathrm{Cat}_{\mathrm{st}}}(\mathrm{Sp}^\omega)\simeq\mathrm{pic}(\mathbb{S})$, the \mathbb{E}_2 -map

$$\mathbb{Z} \longrightarrow \mathrm{pic}(\mathbb{S}) \quad \in \quad \mathrm{Grp}_{\mathbb{E}_2}(\mathbb{S})$$

deloops to an action of $S^1 \simeq \mathrm{B}\mathbb{Z}$ on $\mathrm{Cat}_{\mathrm{st}}$

- ullet Lurie gives two constructions of the \mathbb{E}_2 -lift
 - A "combinatorial" construction, via an analysis of filtrations (at the core, exhibiting as endomorphisms of the unit of a certain monoidal category)
 - A geometric construction, via the J-homomorphism

$$j \colon \mathrm{ku} \longrightarrow \mathrm{pic}(\mathbb{S}) \qquad \in \qquad \mathrm{Sp}_{\geq 0}$$

which sends $1 \in \mathbb{Z} \simeq \pi_0(ku)$ to $\Sigma^2 \mathbb{S}$, using Bott periodicity

Recap on commutativity and Picard

ullet Elements in a connective spectrum $X\in A$ have non-trivial

$$\Sigma_n \curvearrowright X^{\otimes n} \in A$$

Trivialization is extra data

$$A_{\mathbb{Z}} := \text{hom}(\mathbb{Z}, A) \in \text{Sp}_{>0}$$

- Ordinary Picard elements are always strict
- For ordinary rings $\Sigma^2 R \in \operatorname{pic}(R)_{\mathbb{Z}}$ is strict, but ΣR isn't
- $\Sigma^2 \mathbb{S} \in \mathrm{pic}(\mathbb{S})$ has an \mathbb{E}_2 -lift

Algebraic K-theory

ullet For a commutative ring spectrum R consider

$$\operatorname{Perf}(R) := \operatorname{Mod}_R(\operatorname{Sp})^{\omega} \in \operatorname{CAlg}(\operatorname{Cat}_{\operatorname{st}})$$

• ${
m K}(R)$ obtained from ${
m Perf}(R)^{\simeq}$ by splitting exact sequences

$$X \longrightarrow Y \longrightarrow Z \qquad \rightsquigarrow \qquad [X] + [Z] \simeq [Y]$$

implemented by S_{ullet} -construction

• $K(R) \in CAlg(\mathrm{Sp}_{>0})$ is a commutative ring spectrum with

$$[X] + [Y] = [X \oplus Y], \qquad [X] \cdot [Y] = [X \otimes Y]$$

Units in K-theory

By construction, map of commutative ring spectra

$$\operatorname{Perf}(R)^{\simeq} \longrightarrow \operatorname{K}(R) \qquad \in \qquad \operatorname{CAlg}(\operatorname{Sp}_{\geq 0})$$

$$X \longmapsto [X]$$

Multiplicatively invertible elements

$$\mathrm{pic}(R) := (\mathrm{Perf}(R)^{\simeq})^{\times} \longrightarrow \mathrm{K}(R)^{\times} \qquad \in \qquad \mathrm{Sp}_{\geq 0}$$

Example

$$\Sigma^n R \in \mathrm{pic}(R) \text{ gives } [\Sigma^n R] \in \mathrm{K}(R)^\times,$$
 if R is ordinary, $[\Sigma^2 R] \in \mathrm{K}(R)_{\mathbb{Z}}^\times$ is strict

Splitting of units

Theorem (Carmeli-Luecke (2024))

The second k-invariant of $K(\mathbb{Z})^{\times}$ vanishes, i.e.

$$K(\mathbb{Z})^{\times} \simeq \tau_{\leq 1} K(\mathbb{Z})^{\times} \oplus \tau_{\geq 2} K(\mathbb{Z})^{\times} \in Sp_{\geq 0}$$

(same for $K(-)^{\times}$ of ordinary rings, after Zariski sheafification)

- Sophisticated analysis using chromatic methods
- Full computation of the strict units $\mathrm{K}(\mathbb{Z})_{\mathbb{Z}}^{ imes}$

Alternative approach

Problem

Is $[\Sigma^2\mathbb{Z}]\in K(\mathbb{Z})_\mathbb{Z}^{ imes}$ trivial? I.e., is the following null-homotopic

$$\mathbb{Z} \longrightarrow \operatorname{pic}(\mathbb{Z}) \longrightarrow \operatorname{K}(\mathbb{Z})^{\times} \in \operatorname{Sp}_{\geq 0}$$

Alternative proof of splitting.

If true, would give a factorization

$$\operatorname{pic}(\mathbb{Z}) \longrightarrow \operatorname{K}(\mathbb{Z})^{\times} \longrightarrow \tau_{\leq 1} \operatorname{K}(\mathbb{Z})^{\times}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{pic}(\mathbb{Z})/2\mathbb{Z}$$

and the composition is an isomorphism, providing a section

Question over complex cobordism

• Complex cobordism MU is the Thom spectrum of

$$\mathrm{bu} = \tau_{\geq 2} \mathrm{ku} \longrightarrow \mathrm{ku} \xrightarrow{j} \mathrm{pic}(\mathbb{S}) \qquad \in \qquad \mathrm{Sp}_{\geq 0}$$

i.e., equipped with a null-homotopy of

$$bu \longrightarrow pic(\mathbb{S}) \longrightarrow pic(MU) \qquad \in \qquad Sp_{\geq 0}$$

hence receives a map

$$\mathbb{Z} \simeq \mathrm{ku/bu} \longrightarrow \mathrm{pic}(\mathrm{MU}) \in \mathrm{Sp}_{\geq 0}$$

• Canonically get $\Sigma^2 MU \in \operatorname{pic}(MU)_{\mathbb{Z}}$

Complex oriented strict triviality

Theorem (B.-M., in progress)

For any map of commutative ring spectra $\mathrm{MU} \to R$, K-theory trivializes $\Sigma^2 R \in \mathrm{pic}(R)_{\mathbb{Z}}$, i.e., the composition

$$\mathbb{Z} \longrightarrow \operatorname{pic}(MU) \longrightarrow \operatorname{pic}(R) \longrightarrow K(R)^{\times} \in \operatorname{Sp}_{\geq 0}$$

is null-homotopic

Example

For any ordinary commutative ring R have

$$MU \longrightarrow \tau_{\leq 0}MU \simeq \mathbb{Z} \longrightarrow R$$

Triviality of $\Sigma^2 R$

 \bullet ΣX participates in

$$X \longrightarrow 0 \longrightarrow \Sigma X \qquad \leadsto \qquad [\Sigma X] \simeq -[X]$$

• Applied twice to X = R

$$[\Sigma^2 R] \simeq [R] \in \mathrm{K}(R)^{\times}$$

That is, the map

$$\mathbb{S} \longrightarrow \mathrm{pic}(R) \longrightarrow \mathrm{K}(R)^{\times} \qquad \in \qquad \mathrm{Sp}_{\geq 0}$$
 choosing $[\Sigma^2 R]$ is null-homotopic

0 1

Rotation invariance

Theorem (Lurie (2015))

K-theory trivializes the \mathbb{E}_2 -lift of $\Sigma^2\mathbb{S}$, i.e., the composition

$$\mathbb{Z} \longrightarrow \mathrm{pic}(\mathbb{S}) \longrightarrow \mathrm{K}(\mathbb{S})^{\times} \qquad \in \qquad \mathrm{Grp}_{\mathbb{E}_2}(\mathbb{S})$$

is null-homotopic

- ullet Using the "combinatorial", rather than the geometric, \mathbb{E}_2 -lift
- Lift corresponds to an S^1 -action on Cat_{st} , trivialization corresponds to S^1 -invariance of $K \colon Cat_{st} \to Sp$
- Present K-theory via the paracyclic S_{\bullet} -construction, extra functoriality makes it S^1 -equivariant

Complex oriented rotation invariance

Theorem (B.-M., in progress)

K-theory trivializes $\Sigma^2 MU \in pic(MU)_{\mathbb{Z}}$, i.e., the composition

$$\mathbb{Z} \longrightarrow \operatorname{pic}(MU) \longrightarrow K(MU)^{\times} \in \operatorname{Sp}_{\geq 0}$$

is null-homotopic

- Lurie's identification transfers from geometric side (J-homomorphism) to "combinatorial" side
- ullet Giving a strict S^1 -action on $\operatorname{Perf}(\operatorname{MU})$ -linear categories
- Make the paracyclic S_{\bullet} -construction of $\operatorname{Perf}(\operatorname{MU})$ -linear categories strictly S^1 -equivariant

Recap

- $\Sigma^2 R \in \mathrm{pic}(R)$ strictly commutes with itself for ordinary R
- ullet Doesn't over $\mathbb S$, but does already over MU
- ullet Splitting of exact sequence in K-theory trivializes $\Sigma^2 R$
- And its strict structure

Thank You!