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0 Overview

This talk covers Sections 10 and 11 of Dustin’s paper arXiv:2506.18174. We are going
to apply all the technology developed in the last few talks to prove the main theorem
of the paper. I’d like to start by stating the main theorem soon, even without defining
everything, to ground the discussion. To that end, let’s first recall that Atiyah duality
connects the cohomology and homology of a smooth manifold, which I’d like to state in
two parts.

Theorem 0.1 (Atiyah duality). Let M be a smooth manifold and denote f : M → pt.

(1) f is Sp-smooth, that is, for any spectrum E, the map

f∗E ⊗ ωf
∼−−→ f !E, ωf := f !S

is an isomorphism, and ωf is invertible.

(2) There is a canonical isomorphism ωf ≃ ST M .

Example 0.2 (Poincare duality). Assume that M is compact, so that f is Sp-proper.
Taking E = Z and applying f! we recover Poincare duality in the following form

C•(M ;Z)∨ ≃ C•(M ; ΛdZT M [d]),

where ΛdZT M is the orientation local system.

We want to prove a variant of this theorem for real and p-adic Lie groups, namely for
f : BG→ pt with G ∈ Grp(ManF ). With integral (rather than spectral) coefficients this
was done by Lazard(–Serre). In the previous talk, we have proven (or at least stated)
Spp-smoothness, which essentially reduces to Lazard’s case. In light of this, the real
content, which is the main theorem of the paper, is the identification of the dualizing
object ωf , to which we will dedicate the first half of the lecture.
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Theorem 0.3. Let G be a real Lie group, and let f : BG→ pt, then

ωf = f !S ≃ S−adG ∈ Shet(BG; Sp),

where adG : V → BG is the adjoint representation viewed as a vector bundle, and BG is
the associated condensed anima.

If G is instead a p-adic Lie group, working with p-adic coefficients, we have

ωf = f !Sp ≃ SadG
p ∈ Shet(BG; Spp),

The lack of a minus sign in the latter is not a typo, but it is a normalization choice
which I will explain later. Of course, I also haven’t told you yet what is SV .

Example 0.4. Let G be a p-adic Lie group. We have shown last time that if it is
compact and p-torsion-free, then f : BG → pt is also Spp-proper. One can check that
after base-change to Zp the dualizing object simplifies to something analogues to the
orientation local system above, and we recover Lazard duality

C•(G;Zp)∨ ≃ C•(G; (ΛdadG)Zp [d]).

In the second half of the lecture we will carry out a more systematic study of V 7→ SV .
As is clear from the notation, this is closely related to the J-homomorphism, giving in
particular a p-adic analogue. In fact, we will also prove a reciprocity law for them, which
implies Artin reciprocity law from class field theory. Thus the plan for today is:

(1) A uniform proof of Atiyah duality and Lie group dualities.

(2) J-homomorphisms and the reciprocity law.

(3) Bonus: Artin reciprocity.

1 Atiyah duality and linearization of Lie groups

1.1 Deformation to the tangent bundle

Our first goal is proving Atiyah duality for representable submersions. Let us begin by
recalling some definitions from Daniel Arone’s talk. For X ∈ ManF , we have defined
another manifold T X equipped with a projection and a zero section. Importantly, we
also defined the deformation space, which comes with a projection Π: DX → F × X
and a section Σ, which are F ×-equivariant. The main features of this constructions are
that

DX ×F {0} ≃ T X, DX ×F F × ≃ F × ×X ×X,

where over 0, Π is the projection and Σ is the zero section, and away from 0 they are
projection to the first factor and the diagonal. Namely, we have an (F ×-equivariant)
deformation of X ×X to T X.

These constructions also relativize: for a submersion f : X → Y in ManF , we get a
relative tangent bundle T (X/Y ) = ker(T X → f∗T Y ) and deformation space D(X/Y )
satisfying exactly the same properties. Since T and D are sheaves (i.e. local on the
target), we can generalize to any representable submersion f : X → Y in Sh(ManF ).
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1.2 Thom objects

In the statement of Atiyah duality we would like to have ST (X/Y ), so we better define
this. We start with the real case.

Definition 1.1. Let X ∈ Sh(ManR) and let f : V → X be a vector bundle with zero
section e : X → V . We define

SV := e∗f !S ∈ Shet(X ; Sp).

By Sp-smoothness of f , we learn that f !S is an invertible object, and thus so is SV .
Hence, it is locally constant, thus lifting to the subcategory

An/|X| ⊗ Sp ≃ Shet(|X|; Sp) →֒ Shet(X; Sp).

Remark 1.2. This admits a more familiar description in terms of the complement of the
zero section V \ 0→ V , by a standard six functor formalism argument

SV ≃ Σ∞(|V | / |V \ 0|)

where here everything is over |X|.

1.3 Atiyah duality

We are now in position to prove Atiyah duality for a relative submersion f : X → Y in
Sh(ManR). Recall that the associated map of condensed anima f : X → Y is Sp-smooth,
by reducing to manifolds, so it remains to identify the dualizing object.

Theorem 1.3. Let f : X → Y be a representable submersion in Sh(ManF ), then

ωf := f !S ≃ ST (X/Y ) ∈ Shet(X ; Sp).

The idea of the proof will be to use the deformation space D(X/Y ) to interpolate
between the fiber of 1 and the fiber of 0. Thus, before proceeding with the proof, let me
give the following very general and easy formula.

Lemma 1.4. Let f : X → Y be a smooth map for some six functor formalism. Then

ωf = f !1 ≃ δ∗π!
11 ∈ D(X)

where the maps are the diagonal δ : X → X×Y X and first projection π1 : X×Y X → X.

Proof. Indeed, using base-change for upper shriek, we get

f ! ≃ Id∗f ! ≃ δ∗π∗
2f ! ≃ δ∗π!

1f∗ ≃ δ∗π!
1.
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Proof of Atiyah duality. Consider the deformation space, and recall that Π: D(X/Y )→
R×X is a representable submersion with section Σ. Arguing as for SV above, smoothness
implies that SD(X/Y ) := Σ∗Π!S ∈ Shet(R×X, Sp) is locally constant. Hence it comes
from the full subcategory Shet(|R×X|; Sp) ≃ An/|R×X|⊗Sp, and since R is contractible,
the fibers over 0 and 1 are the same

0∗SD(X/Y ) ≃ 1∗SD(X/Y ).

The fiber of D(X/Y ) is T (X/Y ) (with the projection and zero section), and over 1 it is
X ×Y X (with the first projection and diagonal). Using base-change and the diagonal
lemma we get

ωf = f !S ≃ δ∗π!
1S = SX×Y X ≃ 1∗SD(X/Y ) ≃ 0∗SD(X/Y ) ≃ ST (X/Y ),

concluding the proof.

1.4 Linearization of real Lie groups

We now wish to show that for f : BG → pt given a real Lie group G ∈ Grp(ManR), we
have ωf ≃ S−adG in Shet(BG; Sp), where adG → BG is the Lie algebra g := T G with the
conjugation action, and the minus sign denotes dual (recall it is an invertible object).
The argument is very similar to the above. We proceed in two steps: proving a version
in families but forgetting the G-action, and deducing the result.

Proposition 1.5. Let X ∈ Sh(ManR), and let G→ X be a Lie group, i.e. a group object
in representable submersions over X. Let f : BG → X denote the relative classifying
stack, and let e : X → BG denote the relative basepoint. Let g := T (G/X) → X denote
the Lie group viewed as a vector bundle. Then

e∗ωf = e∗f !S ≃ S−g ∈ Shet(X ; Sp).

Proof. This is almost exactly as above, but rather than looking at D(BG/X) → X we
look at D(G/X) → X, which is still a group object, and pass to its relative classifying
stack. Note that the fibers this time are Bg over 0 and the diagonal BG×X BG over 1.
Therefore, all that remains is to show that the Thom SBg of Bg is dual to Sg, which we
prove in the following lemma.

Lemma 1.6. Let X
e
−−→ V

f
−−→ X be a vector bundle, and denote X

eB−−→ BV
fB−−→ X.

Then SBV := e∗
Bf !

BS is dual to SV .

Proof. Note that eB is smooth thus

S ≃ e!
Bf !

BS ≃ e∗
Bf !

BS⊗ e!
BS,

so it remains to show that e!
BS ≃ SV . This follows from the diagonal lemma for the

morphism eB, noting that in this case V ≃ X ×BV X, the projection is f and the
diagonal is e, so that e!

BS ≃ e∗f !S = SV .
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We can now prove the theorem, recording the G-action.

Theorem 1.7. Let G be a real Lie group, and let f : BG→ pt, then

ωf := f !S ≃ S−adG ∈ Shet(BG; Sp).

Proof. This follows immediately from the previous proposition in families, once we un-
derstand what exactly is adG, so let’s do that. For a discrete group G, we have the
functor

Gad : BG −−→ Grp

sending the base-point to pt ∈ BG to G with its G-action by conjugation. We can
post-compose to get

BG
Gad

−−→ Grp ∼−−→ Grpdpt,cn −−→ Grpd,

and it is easy to see that this is the constant functor with value BG. Taking the un-
straightening, this is π1 : BG× BG→ BG. Functoriality in G shows that this passes to
topoi, and thus this holds for our Lie group. To summarize, the projection encodes the
adjoint action on G.

Consider then the group BG × G as a group object relative to BG, whose tangent
bundle is then T (BG×G/BG) ≃ adG. The relative classifying stack is π1 : BG×BG→
BG with basepoint δ : BG→ BG× BG, we conclude using the diagonal lemma and the
previous proposition

ωf = f !S ≃ δ∗π!
1S ≃ S−T (BG×G/BG) ≃ S−adG Shet(BG; Sp).

1.5 Linearization of p-adic Lie groups

Stating the p-adic case requires modifying our definitions. Notably, V → X is generally
not Sp-smooth: indeed, Qp → pt isn’t. However, BV → X is Spp-smooth, as we have

shown last time. Recall that we have seen above that S−BV ≃ SV . In light of this we
make the following definition in the p-adic case.

Definition 1.8. Let X ∈ Sh(ManQp) and let V → X be a vector bundle, and consider

X
eB−−→ BV

fB−−→ X. We define

SV
p := e∗

Bf !
BS ∈ Shet(X ; Spp).

Remark 1.9. Note that we do not introduce a minus sign in the notation, inconsis-
tently with the real case. This may seem very odd and confusing convention, but I can
offer the following two reasons:

(1) In the real case, SV of course lives in Q-homology degree dim(V ). Similarly, in the
proof of the Spp-smoothness of BV → X, with the convention above, SV

p lives in
Fp-homology degree dim(V ).
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(2) As we shall explain in the second half of the talk, this makes the statement of
the reciprocity theorem more uniform, and in fact we don’t really have room for
choice.

With this in place, and being careful with the minus sign, we prove duality.

Theorem 1.10. Let G be a p-adic Lie group, and let f : BG→ pt, then

ωf := f !Sp ≃ SadG
p ∈ Shet(BG; Spp).

Proof. The proof goes in verbatim as in the real case, with one slight modification.
Previously we argued that the 0 and 1 fibers agree because R is contractible. Now we
have Qp in place of R, which is not contractible. Nevertheless, the construction is Q×

p -
equivariant, so the fibers still agree by the non-standard interval we have seen in the end
of the last talk.

2 J-homomorphisms and reciprocity

In the previous part of the talk, we have considered the construction V 7→ SV . In this
part, we would like to study this construction in more detail, as we vary V (but fix the
base X). For example, we saw that SBV is dual to SV , and more generally, it is true that
for a short exact sequence V →W →W/V we have SW ≃ SV ⊗SV/W . We thus see that
this is K-theoretic. Of course, as the notation suggest, this construction is reminiscent
of the well-known J-homomorphism

J : ko −−→ Pic(S), J(V ) = SV .

We are going to see that the construction V 7→ SV from the previous section assembles
into a generalization of the J-homomorphism. They will be more general in two ways.
First, we get an adic version, namely for F of characteristic 6= p we get

JF : K(F ) −−→ Pic(Sp).

Second, this will actually be defined for much “larger” objects e.g. locally compact
vector spaces rather than just finite dimensional. We will also show that as we vary F ,
there is a certain product formula. These results were obtained by Dustin a previous
paper arXiv:1110.5851. In another paper arXiv:1703.07842 he used this to give a new,
homotopy theoretic construction of the Artin homomorphism – one of the key results of
class field theory.

2.1 Vectorial objects

Much of the discussion can be axiomatized as follows. An interesting observation is
that if f : V → X real vector bundle, then f∗ is fully faithful (well known). This is
not true in general for p-adic vector bundles, but does holds for the relative classifying
stack f : BV → X (as we have essentially seen in the previous talk). Passing to relative
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classifying stack one more time, something even better happens: f∗ is an equivalence,
with an inverse f∗; by smoothness f ! is also an equivalence with inverse f!. As we’ll see
soon, using this as our definition, we can give a very clean treatment. To that end, we
fix a six functor formalism, i.e. a lax symmetric monoidal functor D : SpanE(C)→ PrL.

Definition 2.1. We say that a map f : X → Y in C is vectorial if it is in E and for
every base-change f̃ of f , the functors f̃∗ and f̃! are equivalences. We say that an object
X ∈ C is vectorial if f : X → pt is.

Proposition 2.2. Vectorial implies smooth.

Remark 2.3. f : X → Y is vectorial if and only if X ∈ C/Y is, so we can often work with
objects.

Definition 2.4. For a vectorial object X ∈ C, letting f : X → pt, we define J(X) to be
the compactly supported cohomology

J(X) := f!f
∗1 ∈ D(pt).

Since both functors are D(pt)-linear equivalences, it immediately follows that object
is invertible. If we have a section, this also agrees with the definition from the previous
section, up to inverting.

Proposition 2.5. Assume X is vectorial, and we have a section e : pt→ X, then

J(X) := f!f
∗1 ≃ (e∗f !1)−1 ∈ D(pt).

Construction 2.6. We construct a map of connective spectra

J : K(VectD) −−→ Pic(D(∗)) ∈ Sp≥0,

refining the construction J(X) above.
We first describe K(VectD). Define Q(VectD) := SpanV (VectD) ⊂ SpanE(C) to be

the subcategory on spans where the objects are vectorial and the covariant morphisms
are vectorial. This is symmetric monoidal via the cartesian structure on VectD. Take
geometric realization and loop K(VectD) := Ω|Q(VectD)|, which is a a group-like E∞-
space, i.e. a connective spectrum.

To construct J , start with the lax symmetric monoidal D : SpanE(C)→ ModD(pt)(PrL).
Restrict to Q(VectD). By vectoriality D(X) is isomorphic to D(pt) (via f∗ or f!, since
J(X) is invertible) and in particular lands in the invertible objects. By 2-out-of-3 any
morphisms between vectorial objects is sent an invertible morphisms. Thus, the restric-
tion gives D : Q(VectD)→ Pic(ModD(pt)(PrL)). By adjunction, this factors through the
geometric realization. Taking loop, we get J : K(VectD)→ Pic(D(pt)).

It makes sense to extend the definitions above from objects of C to spectrum objects.
One reason is that our central example – vector bundles – do have an additive structure.
A second reason is in the p-adic case, Qp → pt was not even smooth, but taking B2Qp is
vectorial, so we’d like to say that Qp itself is vectorial if we record its additive structure.
I’ll be light on the details here in the interest of time.
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Definition 2.7. We say that the six functor formalism D : SpanE(C) → PrL has good
descent if C is an ∞-topos, D∗ is limit preserving, and the condition for f : X → Y to
be in E is local on Y .

Example 2.8. This holds for Shet on condensed anima.

From now on we assume this condition.

Definition 2.9. We say that X ∈ C ⊗ Sp is vectorial if it is bounded below, and
Ω∞ΣnX ∈ C is vectorial for n large enough. We denote vectD ⊂ C ⊗ Sp for their full
subcategory.

Construction 2.10. We construct map of connective spectra

J : K(vectD) −−→ Pic(D(∗)) ∈ Sp≥0

refining the previous map. This time, vectD is a stable category, and by K-theory
we really mean any of the normal K-theories, e.g. the Q-construction K(vectD) :=
Ω|Span(vectD)|. This is a refinement in the following more precise sense. We let
Q(vectM,≥1) ⊂ Span(vectD) denote the subcategory where objects have πiX = 0 for
i ≤ 0 and Ω∞X is vectorial, and morphisms X ← C → Y are such that πiC = 0 for
i ≤ 0 and C → Y is surjective on π1 and its Ω∞ is vectorial. By construction this fits
into

Q(VectM )
Ω∞

←−− Q(vectM,≥1) −֒→ Span(vectD).

One proves (and we won’t) that the right map induces an isomorphism on Ω|−|, allowing
us to extend J along the left morphism compatibly.

2.2 Proper and etale triviality

Many of the objects we consider in practice are proper or etale. It turns out that these
have trivial J . Indeed, say f : X → pt is proper, i.e. f! ≃ f∗. Vectoriality says that f∗

is inverse to f∗, hence
J(X) := f!f

∗1 ≃ 1.

Let us prove this functorially way. Let Q(Vectπ
D), Q(Vectǫ

D) ⊂ Q(VectD) denote the
subcategories where the objects are proper (respectively etale) and so are the objects in
the spans. We define their K-theory by Ω| − | as above.

Theorem 2.11. There is a canonical trivialization of

K(Vectπ
D) −−→ K(VectD)

J
−−→ Pic(D(∗))

and similarly for etale.

Proof. The etale case is dual, so we only discuss the proper case.
With out loss of generality we may assume that all objects of C are proper (which

are closed under finite limits, hence the six functor formalism restricts). We want to use
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Eilenberg swindle, so we need to have countable products. Let C̃ := Pro(C), and we wish
to extend the six functor formalism. Extending D∗ : Cop → PrL by filtered colimits, we
get D̃∗ : C̃op → PrL. By properness, for every morphism f in C, the morphism f∗ has
a right adjoint f∗ ≃ f! satisfying the projection formula and commuting with pullback.
This is inherited to morphisms in C̃, since the formula for adjoint of a limit is the limit
of the adjoints. Thus, taking Ẽ = C̃, P̃ = C̃ and Ĩ = iso, by Heyer–Mann, we get a six
functor formalism D̃ : Span(C̃)→ PrL.

Consequently, we get a factorization of J as

K(VectD) −−→ K(Vect
D̃

) −−→ Pic(D(pt)),

so it suffices to show that the middle term vanishes. Since Vect
D̃

has countable products,
we finish bu Eilenberg swindle: Intuitively, for every object X we have

∏
N X ≃ (

∏
N X)×

X, so in K we get [
∏

N X] = [
∏

N X] + [X] namely [X] = 0. Writing Id in place of X,
this shows that K(Vect

D̃
) = 0 as required.

The entire discussion above follows for the spectrum objects version vectD.

2.3 J-homomorphism for condensed anima

Back to reality, let’s consider the six functor formalism Shet(−; Spp) for a fixed prime
p. We give examples of vectorial, sometimes also proper or etale, spectrum objects M
arising from condensed abelian groups. Recall that by definition M is vectorial as a
spectrum object if and only if BnM is for some n – in practice n = 2 will always suffice.

Theorem 2.12. The following condensed abelian groups are vectorial for Shet(−; Spp)
when considered as condensed spectra:

(1) Any discrete Z[1/p]-module, which is moreover etale.

(2) Any compact Hausdorff second countable and finite dimensional Z[1/p]-module,
which is moreover proper.

(3) For any local field F of characteristic 6= p, any finite dimensional F -vector space.

Proof. For 1, it suffices to show that f : BM → pt is etale and has f∗ is fully faithful
(which is inherited for any pullback and then pullback along B2M → pt is an equivalence;
etaleness treats f!). We have seen before that it is in fact Sp-etale. To check fully
faithfulness of f∗, consider its left adjoint f♮, and we need to show that for any p-
complete X, the counit f♮f

∗X → X from the M -homology is an isomorphism. p-
complete equivalences can be checked mod p, and by induction on the Postnikov tower,
we reduce to X = Fp. In this case, by resolving M and Kunneth, we reduce to M =
Z[1/p], in which case it is an easy computation.

Case 2 is dealt in an essentially dual case.
For 3, we first handle non-archimedean F of residue characteristic 6= p. Consider

the short exact sequence OF → F → F/OF . The first term is handled by 1 and the
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third by 2, and since vect is stable, we get that F is vectorial. Thus so is M = ⊕kF .
For archimedean we need to handle R → pt, this follows by a standard argument from
the fact that this map is smooth and pullback along it is fully faithful. Finally, for
non-archimedean F of residue characteristic p, we are reduced to Qp. Consider the short
exact sequence

0 −−→ Z[1/p] −−→ Qp ⊕ R −−→ C −−→ 0.

The first term is vectorial by 1. The last term C = limn R/pnZ is vectorial by 2. By
stability Qp ⊕ R is vectorial. Since we already know that R is vectorial, we get that Qp

is vectorial as required.

Applying the general theory, we get the following.

Definition 2.13. We have a J-homomorphism

J : K(vectShet(−;Spp)) −−→ Pic(Sp).

By the previous theorem, we can restrict to finite dimensional vector spaces over a local
field F of characteristic 6= p, yielding

JF : K(F ) −−→ Pic(Sp).

Remark 2.14. For F = R the proof shows that this refines to Pic(S). In the non-
archimedean case, if the residue characteristic ℓ 6= p this similarly refines to Pic(S[1/ℓ]).

2.4 Product formula

Our final theorem from this paper for today is the following (which one actually wants
for infinite S).

Theorem 2.15. Let F be a global field of characteristic 6= p, and S finite set of place
containing all infinite places of F and those above p. Then there is a null-homotopy of

K(OF,S) −−→
⊕

ν∈S

K(Fν)

⊕
JFν

−−−−→ Pic(Sp).

Here OF,S = {x ∈ F | |x|ν ≤ 1 for all ν /∈ S}.

Proof. Using that K-theory commutes with finite products, we can rewrite this as

K(OF,S) −−→ K(
∏

Fν)
J
−→ Pic(Sp).

Let us consider only the case of OF,S, general modules follow by tensoring. We need to
show that the composition sends OF,S, which is given by J(

∏
Fν), to Sp. Note that we

have a short exact sequence

0 −−→ OF,S −−→
∏

Fν −−→ CF,S −−→ 0

where the first term is discrete, and the last is compact Hausdorff. By the previous
theorem, all objects are vectorial, with the first etale and the last proper. By the
theorem about proper/etale vectorial objects, the first and last are canonically sent Sp,
and since K-theory splits short exact sequences, we conclude the same for

∏
Fν .
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3 Bonus: Class field theory and Artin reciprocity

In arXiv:1703.07842 (see also this talk), Dustin explains how to construct Artin map
– the main construction of class field theory – using the ingredients of the second half
of today. This is very cool, so I decided to include some discussion of that. Class field
theory is in the business of understanding the maximal abelian Galois group Gab

F of some
fields, which turns out to be described by the very explicit idele class group CF , which
we divide to three cases:

CF =





Z finite field

F × local field

A×
F /F × global field

where the adeles are

AF :=
∏

′(Fν ,OFν ) := {(aν) ∈
∏

Fν | aν ∈ OFν for all but finitely many ν},

into which F embeds diagonally. For example, for F = Q this is AQ = (Ẑ⊗Q)×R. The
main theorem of class field theory is the following.

Theorem 3.1. There is an Artin homomorphism

CF −−→ Gab
F ,

inducing an isomorphism on the profinite completion of the source.

The Artin map is functorial in the field F in various ways, which also pins it down
from the case of finite fields. A big part of the theorem is about producing the Artin map.
We now explain a K-theoretic approach, which is uniform (and therefore functorial) in
the field F . For simplicity, let’s assume that the characteristic of F is not p (or throw
away that part of the Galois group).

Proposition 3.2. Assume that F has virtual cohomological dimension ≤ 2, then

Gab
F ≃ π1 hom(LK(1)K(F ), LK(1) Pic(Sp)).

Proof idea. By Thomason’s theorem, LK(1)K satisfies etale hyperdescent. Thus, by
Suslin’s computation of K-theory of separably closed fields we can compute LK(1)K(F )
by descent. VCD condition guarantees the collapse of the spectral sequence giving

π−1LK(1)K(F ) = H1(GF ,Zp) = hom(Gab
F ,Zp),

and the result follows by taking the dual.

Proposition 3.3. There is a canonical map CF → π1(K(LCF )) where LCF is locally
compact condensed F -modules.
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Proof. This is where the product formula enters. Let me unpack this an argue more
directly, and let’s only do the most interesting one, the global case. Note AF is an
object of LCF , with an action of A×

F , giving A×
F → π1(K(LCF )). It remains to show

that it vanishes on F ×. Note that we have an F ×-equivariant short exact sequence

0 −−→ F −−→ AF −−→ AF /F −−→ 0.

But the first term is discrete and the last is compact, hence they vanish in K-theory,
F ×-equivariantly, and thus the same holds for AF , so F × → A×

F → π1(K(LCF )) is 0.

Note that the tensor product of a locally compact condensed F -module with a finite
dimensional F -vector space is locally compact, giving us

K(LCF )⊗K(F ) −−→ K(LCF ).

Post-compose with the J-homomorphism K(LCF )→ Pic(Sp), and mate to get

K(LCF ) −−→ hom(K(F ), Pic(Sp)).

Since everything is functorial in F , which pins everything down, we get the following.

Corollary 3.4. The Artin map is given by the composition

CF → π1(K(LCF )) −−→ π1 hom(LK(1)K(F ), LK(1) Pic(Sp)) ≃ Gab
F .
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