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1 Character Theory and HKR

Let G be a finite group. We recall that the basic construction of character
theory is a map χ : Rep (G) →

∏
G/G C0, where Rep (G) is the representation

ring, and C0 = colimQ (ζm) = Q (ζ∞). One of the main theorems is then

Theorem 1. The character map is an isomorphism when tensored with C0,
that is C0 ⊗ Rep (G) ∼−→

∏
G/G C0.

Let’s reconstruct this map. First, conjugating a representation gives an iso-
morphic representation, that is the same element in the representation ring.
Therefore conjucation induces identity on Rep (G), so we can factor Rep :
FinGrpop B−→ Sop → CRing. Define the lattice as the formal system (do
not take the limit) L = limZ/m. We define the (formal) free loop space
of BG to be LBG = Map (BL,BG) (if L were Z it was really the free loop
space). We get a map π0LBG→ hom (Rep (BG) ,Rep (BL)), that is Rep (G)→∏
π0LBG Rep (L). We have an algebraic map (indepedent ofG) given by Rep (L) =

colimZ [t] / (tm − 1)→ colimQ (ζm) = Q (ζ∞) = C0. We compose to get

Rep (G)→
∏

π0LBG

Rep (L) ρ α∗ρ (i) = ρ
(
gi
)

→
∏

π0LBG

C0  tr (α∗ρ (1)) = tr (ρ (g))

(?)= HC0
0 (LBG)

To connect this to the usual description we note that LBG = Map (BL,BG) =
Map∗ (BL,BG) //G = hom (L, G) //G = G//G, thus π0LBG = G/G. In (?)
we use that each connected component is BH, thus rationally trivial.

Recall from Nat’s talk that Atiyah-Segal theorem tells us thatK (BG) = Rep (G)∧I ,
thus K (BG) can be studied using characters. As we know, there are higher
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analogues of (p-complete) K-theory, namely Morava E-theory E = En of height
n <∞ at the prime p. Thus, E0 (BG) should be though of as some generalized
representation ring, and our goal is to study it, or rather its rationalization, us-
ing something similar to the character map (it should be noted that everything
is correct at the graded setting E∗ (BG) as well, we restrict to E0 to keep the
exposition simple).

Similarly to before (only this time we are in a p-complete situation), define the
lattice, to be the formal system L = lim (Z/pr)n (whose limit is Znp ). Also,
we define the (formal) n-free loop space LnBG = Map (BL,BG). Like before,
LnBG = hom (L, G) //G = G

(n)
p //G whereG(n)

p is the set of tuples of n elements
of order power of p, acted by conjugation.

In the classical case we had to take the effect of Rep on mapping space and use
the exponential rule, topologically this can be done at once. Then, we use some
algebraic map like in the classical case.

Topological part - Consider the evaluation map BL×LnBG = BL×Map (BL,BG)→
BG. Taking E0 we get E0 (BG)→ E0 (BL× LnBG) ∼= E0 (BL)⊗E0E0 (LnBG),
where Kunneth holds because (each part of the diagram) E0 (BL) is a free E0-
module.

Algebraic part - Later on we will construct a map E0 (BL) → C0, where C0 is
some (flat) p−1E0-algebra, and in the case n = 1, C0 = Qp (ζp∞). Further, we
have a map of spectra E → p−1E.

Combining these we get the following map

χ : E0 (BG) topological−−−−−−−→ E0 (BL)⊗E0 E0 (LnBG)
algebraic−−−−−→ C0 ⊗p−1E0

(
p−1E

)0 (LnBG)
= HC0

0 (LnBG)

Like in the original case, we can identify the last term with
∏
G

(n)
p /G

C0, using

that LnBG = G
(n)
p //G and the rationality. Then indeed in the case n = 1, i.e.

E = K∧p , at least for a p-group, it recovers some completed form of the usual
character map, and for higher n gives some generalized characters.

In fact, by a small modification, we can generalize the definition (which will
be useful later even to prove the case above) to incorporate a G-space X. It
may seem as though we can simply replace each instance of BG by X//G, then
X = G/H gives the case of (G/H) //G = BH. However, the mapping space
Map (BL, X//G) in spaces doesn’t take into account the genunie G structure
on X. One way to solve it, is to use another category in which BG, and X//G,
live, namely the category of topological groupoids (this is a global situation).
Here, BG ∈ TopGrpd has topological space of objects ∗, and morphisms G.
Similarly, for X we define X//G to be the topological groupoid with objects
X, and morphisms X × G, i.e. there is a morphism x → gx. We then define
the (formal) n-free loop space by Ln (X//G) = MapTopGrpd (BL, X//G), and
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we can then repeat the construction from above to obtain the general character
map

χ : E0 (X//G) topological−−−−−−−→ E0 (BL)⊗E0 E0 (Ln (X//G))
algebraic−−−−−→ C0 ⊗p−1E0

(
p−1E

)0 (Ln (X//G))
= HC0

0 (Ln (X//G))

The main theorem of this talk is the following:

Theorem 2 ([HKR, theorem C] and [Pet, theorem A.1.23]). The character
map is an isomorphism when tensored with C0 for every finite G-space X, that
is C0 ⊗E0 E0 (X//G) ∼−→ HC0

0 (Ln (X//G)). In particular, for X = G/G = ∗,
C0 ⊗E0 E0 (BG) ∼−→

∏
G

(n)
p /G

C0.

2 Strategy of the Proof

First, we haven’t defined C0 yet. Second, one may wonder how adding finite
G-spaces X helps. Here’s the strategy:

1. Construct the ring C0, such that C0 ⊗E0 E0 (BA) ∼−→
∏
An

p
C0 for abelian

groups A (indepedent of G), this implies the theorem for X = G/A

2. Both functors commute with finite (homotopy) colimits, so we deduce the
theorem for X with abelian stabilizers

3. Reduce from general G-spaces to G-spaces with abelian stabilizers using
complex oriented descent

3 The Ring C0

We construct C0, such that the theorem is true for abelian groups. In this case,
what we need is C0⊗E0E0 (BA) ∼−→

∏
An

p
C0 (Anp/A = Anp because A is abelian).

For height 1 we should recover C0 = Qp (ζp∞). We take an algebro-geometric
approach, and study the Spec of the the map.

The target is Spec
(∏

An
p
C0

)
= Anp i.e. the constant group scheme Anp over C0.

Also, recall that Nat told us that SpecE0 (BA) = GrpSch
E0

(
Â,G

)
where Â =

hom
(
A,S1) is the Pontryagin-dual (for example, we get that SpecE0 (BZ/pr) =

G [pr] = GrpSch
E0

(
Ẑ/pr,G

)
). What this actually means is that for any E0-

algebra R, we have homE0
(
E0 (BA) , R

)
= homGrp

(
Â,G (R)

)
. Therefore, the
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Spec of the character map over C0 is:

GrpSch
C0

(
Â, C0 ⊗E0 G

)
← Anp

And we want to make this into an isomorphism. The solution is to require that
C0 ⊗E0 G ∼= L̂ (again, we mean the diagrams C0 ⊗E0 G [pr] ∼= L̂/pr), then:

GrpSch
C0

(
Â, C0 ⊗E0 G

)
∼= GrpSch

C0

(
Â, L̂

)
= GrpSch

C0
(L, A) = Anp

The only question remaining, is how would we come up with such a p−1E0-
algebra C0. The solution is in two steps, first find an intermediate algebra over
which we have a canonical map u : L̂→ G, second take the universal place over
which u becomes an isomorphism. (Also this is a classical situation of “there is
a map and they are isomorphic”, we don’t have time to connect the two.)

For the first step, we use again (for a different reason!) the algebro-geometric
interpretation of E0 (BA). Taking A = L = lim (Z/pr)n we get SpecE0 (BL) =
GrpSch

E0

(
L̂,G

)
. Thus, we take the intermediate algebra to be E0 (BL), over

which we have a canonical map u : L̂ → E0 (BL) ⊗E0 G (since it corepresents
the scheme of such maps).

I remind you that what we really mean is the colimit over r of ur : ̂(Z/pr)n →
E0 ((BZ/pr)n)⊗E0G [pr]. We now wish to make u into an isomorphism, and this
is done level-wise. By taking global sections we get a map O (ur) between two
free E0 ((BZ/pr)n)-algebras of the same rank (prn). Thus to make ur an isomor-
phism, it is enough to invert detO (ur), so define C0 = colim (detO (ur))−1

E0 ((BZ/pr)n).

As we said, by construction, over C0, the character map is an isomorphism for
abelian groups. Furthermore, it turns out (see [HKR, lemma 6.3] and [Pet,
lemma A.1.4]) that C0 is a faithfully flat p−1E0-algebra, thus it preserves the
rational information.

We don’t have time to do the case n = 1 in detail. Let me just say that in this
case K∧p (BZ/pr) = O (G [pr]) = Zp [t] /

(
tp

r − 1
)
, and inverting the determinant

exactly induces the canonical map to Qp (ζpr ), as we expect.

4 Complex Oriented Descent

Let me recap. We have generalized the character map to χ : E0 (X//G) →
HC0

0 (Ln (X//G)). For X = G/H, since X//G = (G/H) //G = BH, this
reduces to the usual character map for the groupH. We have shown the theorem
for X = G/A. By the fact that the functors commute with finite colimits, the
theorem holds for finite G-spaces X with abelian stabilizers. So, to finish all
we need is to show that we can reduce from general finite G-spaces to finite
G-spaces with abelian stabilizers. This is done using complex oriented descent.
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Definition 3. Let V be a vector space of dimV = m. Choose an inner product
on V (contractible). Define the space of complete flags, as the space of n-
orthogonal lines Flag (V ) = {(`1, . . . , `m) | `i ⊥ `j} (the topology is the subspace
topology of P (V )m). Similarly, for a vector bundle V → X, we can choose a
metric (contractible), and repeat the construction fiber-wise, to form the flag
bundle Flag (V )→ X.

We don’t have the time to delve into it, but a complex orientation gives control
over flag bundles, similarly to the way it gives control for complex bundles. An
instance of this idea is the following:

Proposition 4 ([HKR, proposition 2.4]). Let F be a complex orientable spec-
trum (e.g. En,HC0), and V → X a vector bundle. Then F 0 (Flag (V )) is a free
module over F 0 (X) (of rank m!).

Using the map Flag (V )→ X, we can form a simplicial resolutionX ← (Flag (V ))•.
Taking F 0 gives F 0 (X)→ F 0 ((Flag (V ))•

)
, that is a cosimplicial resolution of

F 0 (X). The previous proposition shows that in fact:

F 0 (X) = ker
(
F 0 (Flag (V ))→ F 0 (Flag (V )×X Flag (V ))

)
A functor (not necessarily a cohomology theory) satisfying this is said to satisfy
complex oriented descent. To see why it useful for our situation, fix some faithful
representation V of G. Of course, G acts on Flag (V ). We claim that the
stabilizer of any point (`1, . . . , `m) is abelian, this is just because being in the
stabilizer means being diagonial w.r.t to this decomposition, so all points in the
stabilizer are simultaneously diagonalizable, thus commute. For a G-space X,
we get that Flag (V ×X) = Flag (V )×X has abelian stabilizers.
To use complex oriented descent in our case we need to know that F 0 (X) =
E0 (X//G) and F 0 (X) = HC0

0 (Ln (X//G)) satisfy complex oriented descent.
Indeed HKR show (see [HKR, proposition 2.6]) that for a G-vector bundle
V → X, we have Flag (V//G) = Flag (V ) //G → X//G, thus E0 (X//G)
satisfies complex oriented descent. Also, they show that Flag (V )A → XA is
constructed from flag bundles over XA, which implies that the same result
holds for HC0

0 (Ln (X//G)).
Therefore, we have reduced from general G-spaces to G-spaces with abelian
stabliziers, and the proof is concluded.
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