Caesarea Workshop 2018 A stratified homotopy hypothesis

Shay Ben Moshe

18/06/2018

The paper https://arxiv.org/abs/1502.01713.

1 Intro

Throughout the talk stratified spaces are conically smooth stratified spaces, and maps between them are conically smooth. Their (1-)category is denoted by <u>Strat</u>.

The homotopy hypothesis is the assertion that spaces (up to equivalence) are a model for ∞ -groupoids. The idea of this paper is that we can model ∞ categories using stratified spaces. The basic construction is the functor Exit : Strat \rightarrow Cat $_{\infty}$ (where Strat is some ∞ -category of stratified spaces) called the *exit path*, which is fully faithful. Exit (K) should be thought of as the category whose objects are points in K, morphisms are paths in K which once leave a stratum don't come back to it. This basic idea allows the non-invertibility of morphisms. This functor by itself, although fully faithful, doesn't model ∞ categories. We can then look at restricted Yoneda along Exit, and discover that for each $\mathcal{C} \in \operatorname{Cat}_{\infty}$ the presheaf $K \mapsto \operatorname{Map}(\operatorname{Exit}(K), \mathcal{C})$ satisfies some conditions. A presheaf satisfying these conditions is called a *striation sheaf*, and thus we arrive at a functor $\operatorname{Cat}_{\infty} \to \operatorname{Stri}$, which will turn out to be an equivalence, thus we get a model of ∞ -categories as certain sheaves on stratified spaces. This model is very geometric, thus allowing to construct many ∞ categories with geometric origins directly.

2 Constructible Sheaves and Strat

Definition 1. A covering sieve of $K \in \underline{\text{Strat}}$ is a full subcategory \mathcal{U} of $\underline{\text{Strat}}_{/K}$ with the following properties:

- 1. Sieve if $U \to K \in \mathcal{U}$ and $V \to U$ is a morphism in <u>Strat</u>, then $V \to U \to K \in \mathcal{U}$.
- 2. Open each $U \to K \in \mathcal{U}$ can be factored as a $U \to U_0 \to K$ for $U_0 \to K \in \mathcal{U}$ open embedding.
- 3. Surjective for each $x \in K$, $\{x\} \to K \in \mathcal{U}$.

Example 2. If $\bigcup U_{\alpha} = K$ is an open cover, then the collection of all maps $A \to U_{\alpha} \hookrightarrow K$ is a covering sieve of K.

Definition 3. The ∞ -category of *sheaves* on <u>Strat</u> is the full ∞ -subcategory Shv (<u>Strat</u>) \subset PShv (<u>Strat</u>), of all presheaves \mathcal{F} s.t. for each $K \in \underline{Strat}$ and a covering sieve \mathcal{U} of K, $\mathcal{F}(K) \to \lim_{U \in \mathcal{U}} \mathcal{F}(U)$ is an equivalence.

Remark 4. Since each stratified space K has a conically smooth atlas $\{\mathbb{R}^{i_{\alpha}} \times C(Z_{\alpha})\}$, which is in particular an open cover, we see that \mathcal{F} is determined by its values on basics $\mathbb{R}^{i} \times C(Z)$.

Note that a (usual) homotopy $X \times \mathbb{R} \to Y$ is the same as a map $X \times \mathbb{R} \to Y \times \mathbb{R}$ over \mathbb{R} .

Definition 5. Let $f, g : X \to Y$ be maps of stratified spaces. A *stratified* homotopy is $H : X \times \mathbb{R} \to Y \times \mathbb{R}$, which restrict to f resp. g at 0 resp. 1. We then denote $f \simeq g$. $f : X \to Y$ is a *stratified* homotopy equivalence if it has a stratified homotopy inverse. We denote by \mathcal{J} the collection of all stratified homotopy equivalences, and by \mathcal{R} the collection of all projections $X \times \mathbb{R}^n \to X$.

Lemma 6. The following holds:

- 1. Stratified homotopy equivalence is an equivalence relation.
- 2. Stratified homotopy equivalence satisfies 2-out-of-3.
- 3. The projection $X \times \mathbb{R}^n \to X$ is a stratified homotopy equivalence (i.e. $\mathcal{R} \subset \mathcal{J}$.)

Lemma 7. The canonical map $\underline{\operatorname{Strat}} \left[\mathbb{R}^{-1} \right] \to \underline{\operatorname{Strat}} \left[\mathbb{J}^{-1} \right]$ is an equivalence of ∞ -categories.

Proof. Let $F : \underline{\text{Strat}} \to \mathbb{C}$ be a functor to an ∞ -category \mathbb{C} , which carries morphisms in \mathcal{R} to equivalences. For each stratified homotopy equivalence f:

 $X \to Y$, there is a commutative diagram as follows:

Then since all vertical arrows are mapped by F to equivalences, it follows that F(gf) and F(fg) are homotopic to the identities, thus F(f) is an equivalence.

Definition 8 (/Lemma). The ∞ -category of *constructible sheaves on* <u>Strat</u> is the full subcategory $\operatorname{Shv}^{\operatorname{cbl}}(\underline{\operatorname{Strat}}) \subset \operatorname{Shv}(\underline{\operatorname{Strat}})$ of the sheaves $\mathcal{F} : \underline{\operatorname{Strat}}^{\operatorname{op}} \to \operatorname{Spaces}$ that satisfy the following equivalent conditions:

- 1. \mathcal{F} factors through <u>Strat</u> $\left[\mathcal{J}^{-1}\right]^{\mathrm{op}}$.
- 2. \mathcal{F} factors through <u>Strat</u> $\left[\mathcal{R}^{-1}\right]^{\mathrm{op}}$.
- 3. For each stratified homotopy equivalence $X \to Y$, $\mathcal{F}(Y) \to \mathcal{F}(X)$ is an equivalence.
- 4. For each stratified space $K, \mathcal{F}(K) \to \mathcal{F}(K \times \mathbb{R})$ is an equivalence.

The inclusion has a left adjoint $\operatorname{Shv}^{\operatorname{cbl}}(\underline{\operatorname{Strat}}) \underset{L}{\rightleftharpoons} \operatorname{Shv}(\underline{\operatorname{Strat}})$. It can be proved that the Yoneda functor $\underline{\operatorname{Strat}} \to \operatorname{PShv}(\underline{\operatorname{Strat}})$ actually factors through (isotopy sheaves) $\underline{\operatorname{Strat}} \to \operatorname{Shv}(\underline{\operatorname{Strat}})$. We then compose with the functor L, to get $\underline{\operatorname{Strat}} \to \operatorname{Shv}^{\operatorname{cbl}}(\underline{\operatorname{Strat}})$ given by $K \mapsto L \hom_{\operatorname{Strat}}(-, K)$.

Definition 9. The ∞ -category of *conically smooth stratified spaces* Strat is the essential image of that functor.

Theorem 10. The functor <u>Strat</u> \rightarrow Strat induces an equivalence of ∞ -categories <u>Strat</u> $[\mathcal{J}^{-1}] \rightarrow$ Strat.

Proof. We have the following commutative diagram

Since it commutes, the essential images of both paths are equal, and the right functor, being a Yoneda embedding, is fully faithful, thus an equivalence to its essential image. $\hfill\square$

Remark 11. The description via constructible sheaves, using some more ideas, leads to a Kan-enriched model $\operatorname{Map}_{\operatorname{Strat}}(X,Y)_n = \operatorname{hom}_{\operatorname{Strat}}(X \times \Delta_e^n, Y)$, but we don't have time to discuss that.

The functor $\underline{\text{Strat}} \to \underline{\text{Strat}}$ induces an adjunction $\underline{\text{PShv}}(\underline{\text{Strat}}) \rightleftharpoons \underline{\text{PShv}}(\underline{\text{Strat}})$ by pullback and right Kan extension.

Definition 12. The ∞ -category of *sheaves* on Strat is the pullback

$$\begin{array}{c} \mathrm{Shv}\left(\mathrm{Strat}\right) \longrightarrow \mathrm{PShv}\left(\mathrm{Strat}\right) \\ & \downarrow \\ \mathrm{Shv}\left(\mathrm{Strat}\right) \longrightarrow \mathrm{PShv}\left(\mathrm{Strat}\right) \end{array}$$

It is then evident that we have:

Theorem 13. The adjunction above restricts to an equivalence of ∞ -categories $\operatorname{Shv}^{\operatorname{cbl}}(\operatorname{Strat}) \cong \operatorname{Shv}(\operatorname{Strat}).$

3 Exit Paths

Remember how for a space X we define $\operatorname{Sing}(X)$ as a complete Segal space by the composition Sing : Spaces \to PShv(Spaces) \to PShv(Δ) given by $\operatorname{Sing}(X)([n]) = \operatorname{Map}(\Delta^n, X)$. That is we are using the cosimplicial object $\Delta \to$ Spaces given by $[n] \mapsto \Delta^n$ to do restricted Yoneda. We would like to do something similar, but for stratified spaces.

Definition 14. The standard cosimplicial stratified space is st : $\Delta \to \underline{\text{Strat}}$ given on objects by st $([n]) = \Delta^n \to [n]$ where the stratification is $(t_i) \mapsto \max\{i \mid t_i \neq 0\}$. Note that this is also given by \overline{C}^n (*). We denote the composition of st with $\underline{\text{Strat}} \to \underline{\text{Strat}}$ by st : $\Delta \to \underline{\text{Strat}}$ as well.

Definition 15. The *exit path* functor Exit : Strat $\xrightarrow{\text{Yoneda}}$ PShv (Strat) $\xrightarrow{\text{st}^*}$ PShv (Δ) is defined as the restricted Yoneda. On objects it is given by Exit (X) ([n]) = Map_{Strat} (Δ^n, X) (where Δ^n is with the standard stratification.)

Claim 16. For each compact stratified space L the following diagram in Strat is a pushout:

Lemma 17. For each $X \in \text{Strat}$, Exit(X) is a complete Segal space.

Proof. For $n \ge 2$ take $L = \Delta^{n-2}$ in the claim above to get the pushout:

Now, since $\operatorname{Exit}(X)([n]) = \operatorname{Map}_{\operatorname{Strat}}(\Delta^n, X)$, and the map functor sends colimits in the first coordinate to limits, we get the pullback $\operatorname{Exit}(X)([n]) = \operatorname{Exit}(X)([1:n]) \times_{\operatorname{Exit}(X)([1:1])} \operatorname{Exit}(X)([0:1])$, thus we see by induction that the Segal condition is satisfied.

The completeness condition is equivalent to the 2-out-of-6 property. Consider morphisms as follows:

then the 2-out-of-6 property is that if the two curved arrows are equivalence, then so are the other 4 (the 3 drawn, and the one that is their composition). Note that in our case, for each equivalence, we have a retract, and retracts must be from a stratum to itself. But just as in spaces, a path in a single stratum is invertible, so all retracts are invertible, and the 2-out-of-6 property follows.

Formally 2-out-of-6 is the claim that the following diagram is carried by $\operatorname{Map}_{PShv}(\Delta)^{\operatorname{op}}(-, \operatorname{Exit}(X))$ to a pullback:

4 Striation Sheaves

st^{*} has a right adjoint PShv (Strat) $\stackrel{\text{st}^*}{\underset{\text{st}_*}{\rightleftharpoons}} PShv (\Delta)$, given by st_{*} $\mathcal{F}(X) = \text{Map}(\text{Exit}(X), \mathcal{F})$. We have seen before that $\text{Shv}^{\text{cbl}}(\underline{\text{Strat}}) \cong \text{Shv}(\text{Strat})$.

Definition 18. A presheaf $\mathcal{F} \in \text{PShv}(\underline{\text{Strat}})$ is called *cone-local* if for each compact stratified space L, \mathcal{F} sends the following to a pullback:

Through the equivalence above we claim:

Lemma 19. The adjunction restricts to an equivalence $\operatorname{Shv}^{\operatorname{cone,cbl}}(\underline{\operatorname{Strat}}) \cong \operatorname{PShv}(\Delta)$.

Proof. It can be verified directly that $st : \Delta \to Strat$ is fully faithful, implying that st_* is fully faithful as well. It therefore remains to show that the unit $\mathcal{F} \to st_* st^* \mathcal{F}$ is an equivalence iff \mathcal{F} is a cone-local constructible sheaf.

It is first proved that st_* takes values in cone-local constructible sheaf, showing the only if part. The sheaf and cone-local conditions (opposite) are verified directly for the Exit functor, thus since $st_* \mathcal{F}$ are maps from Exit, we get that $st_* \mathcal{F}$ is a cone-local sheaf. Next, since $X \times \mathbb{R} \to X$ induces an equivalence on Exit by definition of Strat, we get that $st_* \mathcal{F}$ is also constructible.

For the other direction, we need to show that the unit $\mathcal{F} \to \operatorname{st}_* \operatorname{st}^* \mathcal{F}$ is an equivalence for a cone-local constructible sheaf. Since both are sheaves, we reduce to basics $\mathbb{R}^i \times C(Z)$, and since both are constructible we reduce to C(Z), and lastly by homotopy equivalence to $\overline{C}(Z)$, where Z is a compact stratified space. Now we induct downwards on the maximal p s.t. $Z \cong \overline{C}^p(L)$. The case $p < \dim Z$ being that of $Z = \Delta^{\dim Z}$, and the inductive step follows by a similar chain of arguments as the above, to show that we can write it as a longer cone.

From this lemma, we see the following, for a presheaf $\mathcal{F} \in PShv$ (Strat):

- The *sheaf* condition implies that it is determined by its values on basics $\mathbb{R}^{i} \times C(L)$.
- Further imposing the *constructible* condition means that it factors through Strat, i.e. determined by its values on cones C(L).
- Further imposing the *cone-local* condition means that it is determined by its values on standard simplicies $\Delta^n = \overline{C}^n(\emptyset)$.

Furthermore, we can impose the *consecutive* condition, that is for each n the following is sent to a pullback

which evidently is equivalent to imposing the Segal condition on the other side.

Lastly, we can impose the *univalent* condition, that is the following is sent to a pullback

which evidently is equivalent to imposing the 2-out-of-6 property, i.e. complete condition on the other side.

Definition 20. Stri \subset PShv (Strat) is the full subcategory of univalent consecutive cone-local constructible sheaves.

Therefore we arrive at the following:

Theorem 21. The adjunction further restricts to an equivalence $\operatorname{Stri} \cong \operatorname{Cat}_{\infty} = \operatorname{PShv}^{\operatorname{Segal,cplt}}(\Delta)$, given by $\mathcal{C} \in \operatorname{Cat}_{\infty}$ mapped to $X \mapsto \operatorname{Map}(\operatorname{Exit}(X), \mathcal{C})$.