# Prismatic Cohomology – Prisms

Shay Ben Moshe

08/12/2019

The goal of this talk is to define *prisms*, which are some of the main ingredients in this theory, and to prove some of their basic properties. A few reminders from previous lectures:

**Definition 1.** A  $\delta$ -ring is a ring A equipped with a function  $\delta : A \to A$ , with axioms that make the map  $\phi_{\delta}(x) = \phi(x) = x^p + p\delta(x)$  into a ring homomorphism. An element  $x \in A$  is called *distinguished* if  $\delta(x)$  is a unit (somewhat similar to a uniformizer).

## 1 Definitions

Without further ado, we move towards the definition of a prism.

**Definition 2** (The category of  $\delta$ -pairs). A  $\delta$ -pair is (A, I) where A is a  $\delta$ -ring (the  $\delta$ -function is omitted from the notation) and  $I \triangleleft A$  is any ideal. A morphism  $(A, I) \rightarrow (B, J)$  is a morphism of  $\delta$ -rings  $A \rightarrow B$  that carries I into J.

**Definition 3** (The category of *prisms*). A *prism* is a  $\delta$ -pair (A, I) such that:

- 1. I defines a Cartier divisor (locally principal, generated by a non-zero-divisor),
- 2. A is derived (p, I)-complete (in particular p, I are in rad (A)),
- 3.  $p \in I + \phi(I) A$ .

The category of prisms is the full subcategory of  $\delta$ -pairs on the prisms.

The prism (A, I) is called:

- 1. perfect if A is a perfect  $\delta$ -ring, i.e.  $\phi : A \to A$  is an isomorphism,
- 2. bounded if A/I has bounded  $p^{\infty}$ -torsion (i.e.  $A[p^{\infty}] = A[p^m]$  for m large enough),
- 3. orientable if I is principal, a choice of a generator is called an orientation,

4. crystalline if I = (p), in particular bounded and orientable.

**Example 4** (Crystalline). For A a p-torsion-free and p-complete  $\delta$ -ring, e.g.  $\mathbb{Z}_p$ , the pair (A, (p)) is a crystalline prism, and any crystalline prism is of this form.

**Example 5** (q-de Rham).  $A = \mathbb{Z}_p[[q-1]]$  with  $\delta$ -structure  $\phi(q) = q^p$ , and  $I = ([p]_q)$  is a bounded orientable prism.

**Example 6** (Universal oriented). Let  $A_0 = \mathbb{Z}_{(p)} \{ d, \delta(d)^{-1} \}$  be the localization of the free  $\delta$ -ring on d, and denote  $A = (A_0)_{p,d}^{\wedge}$ . Then (A, (d)) is a bounded oriented prism. In fact, it is the universal oriented prism.

## 2 Properties & More

The following lemma will mostly be applied for prisms:

**Lemma 7.** Let (A, I) be a  $\delta$ -pair such that I is locally principal, and p, I are in rad (A), then TFAE:

- 1.  $p \in I^{p} + \phi(I) A$ ,
- 2.  $p \in I + \phi(I) A$ ,
- 3. there exists a faithfully flat map of  $\delta$ -rings  $A \xrightarrow{\text{ff}} A'$  that is an ind-Zariski localization such that IA' = (d) with d distinguished and  $d, p \in \text{rad}(A')$ .

*Proof.* (1)  $\implies$  (2) is trivial.

(2)  $\implies$  (3): Let  $(g_1, \ldots, g_n) = A$  such that  $IA[1/g_i]$  is principal. Denote  $B = \prod A[1/g_i]$ , then  $A \to B$  is faithfully flat and IB = (d) is principal. Finally define A' to be the localization along V(p,d) of B, so that  $d, p \in \operatorname{rad}(A')$ .  $A \to B \to A'$  is still faithfully flat (flatness is immediate, faithfulness is since  $d, p \in \operatorname{rad}(A)$ ). By assumption  $p \in \operatorname{rad}(A)$ , so any localization of A admits a unique compatible  $\delta$ -A-algebra structure ( $\phi$  sends units to units, hence  $S^{-1}A$  and  $\{S, \phi(S), \phi^2(S), \ldots\}^{-1}A$  define the same localization, and  $\phi$  on the latter is a lift of Frobenius). A' is a finite product of such so it has a unique compatible  $\delta$ -A-algebra structure. By construction IA' = (d), and by assumption we have  $p \in (d, \phi(d))$ , therefore by a previous lemma about  $\delta$ -rings, d is distinguished.

(3)  $\implies$  (1): We can check the condition after faithfully flat base change, thus enough to check that  $p \in (d^p, \phi(d)) \subseteq A'$ . Since d is distinguished,  $\delta(d)$  is a unit, and  $\phi(d) = d^p + p\delta(d)$ , so the condition is satisfied.

**Lemma 8** (Rigidity). Let  $(A, I) \to (B, J)$  be a map of prisms. Then  $I \otimes_A B \xrightarrow{\sim} J$ , and in particular J = IB.

Further, if  $A \to B$  is a map of  $\delta$ -rings with B derived (p, I)-complete, then (B, IB) is a prism iff B[I] = 0.

*Proof.* The idea is to work locally where the ideals are generated by a distinguished element and use their irreducibility. Specifically, using the previous lemma we choose  $A \xrightarrow{\text{ff}} A'$  such that IA' = (d) with d distinguished and  $d, p \in \text{rad}(A')$ . We want to choose similarly B' with JB' = (e) etc., such that  $B \to B'$  is faithfully flat and, and we have a map  $A' \to B'$  making the square commute. For this take  $A' \otimes_A B$  localized at V(p, J) (which is ff over B), and then apply the previous lemma for it.



By assumption I is sent to J in B, thus  $(d) = IB' \subseteq JB' = (e)$ , so that d = ef for some  $f \in B'$ . Recall that d is distinguished and  $p, e \in rad(B')$ , so we get that f is a unit, so (d) = (e), i.e. IB' = JB'. The result follows by faithfully flat descent.

For the second statement, note that B[I] = 0 iff  $I \otimes_A B \xrightarrow{\sim} IB$ . From the first part, if (B, IB) is a prism then B[I] = 0. If B[I] = 0, then IB is an invertible *B*-module, so a Cartier divisor. Also,  $p \in IB + \phi(I) B$  follows from the condition on *A*. Lastly, *B* is derived (p, I)-complete by assumption, so (B, IB) is a prism.  $\Box$ 

**Lemma 9.** Let (A, I) be a prism. Then  $\phi(I)A$  is principal and any generator is distinguished. Moreover, the invertible A-modules  $\phi^*(I) = I \otimes_{A,\phi} A$  and  $I^p$  are trivial (isomorphic to A).

Proof. It is enough to find one distinguished generator for  $\phi(I)A$ , since another generator differs by a unit i.e. also distinguished. By lemma 7,  $p \in I^p + \phi(I)A$ , write p = a + b. We claim that  $(b) = \phi(I)A$  and that b is distinguished. Again using lemma 7 choose  $A \xrightarrow{\text{ff}} A'$  with IA' = (d). As IA' = (d), we have  $a = xd^p$  and  $b = y\phi(d)$  for  $x, y \in A'$ . Enough to show that y is a unit, since then  $\phi(I)A'$  is generated by b, and it is distinguished (because  $\phi$  and multiplication by units send distinguished to distinguished). Since  $p, d \in \text{rad}(A')$ , enough to show that y is a unit in A'/(p, d), i.e. A'/(p, d, y) = 0. Assume not, then by localizing we can assume that  $y \in \text{rad}(A)$ . Since  $p = a + b = xd^p + y(d^p + p\delta(d))$  we get  $p(1 - y\delta(d)) = d(d^{p-1}(x+y))$ . Since p is distinguished and  $y \in \text{rad}(A')$ , the LHS is distinguished. Since d is also distinguished, we get that  $d^{p-1}(x+y)$  is a unit, thus d is a unit which contradicts  $d \in \text{rad}(A')$ , and we are done.

We won't prove the second part, the idea is that over A/p,  $\phi^*(I) \cong I^p$ , and  $p \in \operatorname{rad}(A)$ so they identify in A, thus it suffices to check for  $\phi^*(I)$ . This is checked on closed points, by passing to  $(A_{\operatorname{perf}})_p^{\wedge}$ . **Lemma 10** (Properties of bounded prisms). Let (A, I) be a bounded prism (i.e. A/I has bounded  $p^{\infty}$ -torsion), then:

- 1. A is classically (p, I)-complete.
- 2. Let  $M \in \mathcal{D}(A)$  be a (p, I)-completely flat A-complex (not in the paper, M derived (p, I)-complete). Then M is discrete and classically (p, I)-complete. For any  $n \ge 0$ , we have  $M[I^n] = 0$  and  $M/I^n$  has bounded  $p^{\infty}$ -torsion.
- 3. The functor  $B \mapsto (B, IB)$  induces an equivalence from the category of (p, I)completely (faithfully) flat  $\delta$ -A-algebras B (not in the paper, B derived (p, I)complete), to the category of (faithfully) flat maps  $(A, I) \rightarrow (B, J)$  of prisms.
- (locally orientable) There exists a (p, I)-completely faithfully flat map of δ-ring A → B, s.t. IB = (d) for d ∈ B distinguished non-zero-divisor, which can be chosen to be the derived (p, I)-completion of an ind-Zariski localization of A. In particular, (A, I) → (B, (d)) is a faithfully flat map of bounded prisms.

*Proof.* For (1), we have

$$A = \operatorname{Rlim}_{n} \operatorname{Rlim}_{m} A / / (I^{n}, p^{m})$$
  
= Rlim Rlim (A/I<sup>n</sup>) / / (p<sup>m</sup>)  
= Rlim Rlim A / (I<sup>n</sup>, p<sup>m</sup>)  
= lim lim A / (I<sup>n</sup>, p<sup>m</sup>)

The first step is using the derived (p, I)-completeness, the second is because  $I^n$  is locally generated by non-zero-divisors, the third is because A/I, thus also  $A/I^n$ , has bounded  $p^{\infty}$ -torsion, and the last since the limits are direct and maps are surjective (Mittag-Leffler).

The argument for (2) is similar to (1). We first work separately to get the properties for  $M//I^n$  using its *p*-completely flatness, and in particular to get that it is discrete (thus  $M[I^n] = 0$ ). Then, taking  $n \to \infty$  and using the derived *I*-completeness we get that *M* itself is discrete. Arguing as above we get that it is also classically (p, I)-complete.

For (3), the inverse is of course given by  $(B, IB) \mapsto B$  (by rigidity), we check that the functors land where they should. If B is a (p, I)-completely (faithfully) flat  $\delta$ -A-algebra, then by rigidity it is enough to check that B[I] = 0 which follows from (2). For the other direction, if  $(A, I) \to (B, J)$  is a (faithfully) flat map of prisms, since by rigidity  $J = IB, A \to B$  is in particular (p, I)-completely (faithfully) flat.

For (4), take B to the derived (p, I)-completion of A' from lemma 7. By (2) B is discrete, B/IB has bounded  $p^{\infty}$ -torsion, and B[I] = 0, so by rigidity (B, IB) is a prism.

#### 2.1 Perfect Prisms

**Lemma 11** (Properties of perfect prisms). Let (A, I) be a perfect prism ( $\phi$  is an isomorphism), then:

- 1. I is principal and any generator is a distinguished element.
- 2. (A, I) is bounded, and in particular A is classically (p, I)-complete (by the previous lemma).

*Proof.* We have seen that  $\phi(I) A$  is principal and any generator is distinguished, and by assumption  $\phi$  is an isomorphism so the same is true for I. For (2), in general for  $\delta$ -rings, if  $\phi$  is injective then A is p-torsion-free. Choose a distinguished generator d, we have seen that perfectness together with p-torsion-freeness imply that A/d has bounded  $p^{\infty}$ -torsion.

**Lemma 12** (Perfection). Let (A, I) be a prism. Denote by  $A_{\text{perf}} = \operatorname{colim}_{\phi} A$  the perfection. Then  $IA_{\text{perf}} = (d)$ , where d is distinguished, p, d are non-zero-divisors, and  $A_{\text{perf}}/d[p^{\infty}] = A_{\text{perf}}/d[p]$ . In particular the derived (p, I)-completion of  $A_{\text{perf}}$ , denoted  $A_{\infty}$ , agrees with the classical completion, and  $(A, I)_{\text{perf}} = (A_{\infty}, IA_{\infty})$  is the universal perfect prism under (A, I).

Proof. As  $A \to A_{\text{perf}}$  factors through  $\phi$ , and  $\phi(I) A$  is generated by a distinguished element, so does  $IA_{\text{perf}} = (d)$ . The other two properties follow from properties of the  $\delta$ ring structure. By *p*-torsion-freeness we have that the derived and classical *p*-completions coincide to give  $(A_{\text{perf}})_p^{\wedge}$ . Here *d* is still non-zero-divisor, also the quotient by  $d^n$  is still derived and classical *p*-complete. Therefore we get that the derived and classical *d*completion of  $(A_{\text{perf}})_p^{\wedge}$  coincide, and give  $A_{\infty} = (A_{\text{perf}})_{(p,d)}^{\wedge}$ . It is now clear that it is a prism, and the universal property is also obvious.

Remark 13. We don't have the time to explain (or define) this, but it is worth remarking that the functor  $(A, I) \mapsto A/I$  gives an equivalence of categories from perfect prisms to perfect oid rings (with inverse  $R \mapsto (A_{inf}(R), \ker \theta)$ ).

### 2.2 Site of Prisms

**Theorem 14.** The opposite category of bounded prisms (A, I), with topology where covers are faithfully flat maps of prisms, forms a site.

*Proof.* There are three axioms to check. First, isomorphisms are covers, which is clear. Second, composition of covers is a cover, is also clear. Lastly, we need to check that the

pushout of a cover along an arbitrary map is a cover. Assume we have prisms (using rigidity to determine the ideals)

and we want to construct the pushout such that d is also faithfully flat. Take  $D = \left(B \otimes_A^L C\right)_{(p,I)}^{\wedge}$  the derived (p, I)-completion of  $B \otimes_A^L C$ . By standard properties, D is (p, I)-completely faithfully flat over C. By properties of bounded prisms it follows that D is discrete, and that  $(C, IC) \to (D, ID)$  is a faithfully flat map of bounded prisms. One checks that it serves as a pushout of b along c.

**Theorem 15.** The functor that carries (A, I) to A (resp. A/I) is a sheaf for this topology, with vanishing higher cohomology on any (A, I).

*Proof.* We denote by (-) the functor (A, I) = A. Let  $(A, I) \to (B, IB)$  be faithfully flat map (cover). Denote by  $N^{\bullet}$  the Cech nerve of (B, IB), and we need to check that  $(A, I) = A \xrightarrow{\sim} \lim_{\Delta} \underline{N^{\bullet}}$  and that higher Rlim vanish.  $N^k$  is by definition the pushout of (B, IB) with itself along  $(A, I) \ k + 1$ -times, so as we have seen in the previous proof,  $\underline{N^k} = \left(B^{\otimes_A^L k + 1}\right)_{(p,I)}^{\wedge}$ , i.e. the derived completion of the derived Cech nerve of  $A \to B$ . Thus we get:

$$\begin{aligned} \operatorname{Rlim}_{\Delta} \underline{N^{k}} &= \operatorname{Rlim}_{\Delta} \left( B^{\otimes_{A}^{L}k+1} \right)_{(p,I)}^{\wedge} \\ &= \operatorname{Rlim}_{\Delta} \operatorname{Rlim}_{n} \left( B^{\otimes_{A}^{L}k+1} \right) / / (p^{n}, I^{n}) \\ &= \operatorname{Rlim}_{n} \operatorname{Rlim}_{\Delta} \left( B^{\otimes_{A}^{L}k+1} \right) / / (p^{n}, I^{n}) \\ &\stackrel{\star}{=} \operatorname{Rlim}_{n} A / / (p^{n}, I^{n}) \\ &= A^{\wedge}_{(p,I)} \\ &= A \end{aligned}$$

where in  $\star$  we use faithfully flat descent. The argument for A/I is similar, use the fact that  $X/I \xrightarrow{\sim} X_I^{\wedge}/I$ .