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The goal of this talk is to define prisms, which are some of the main ingredients in this
theory, and to prove some of their basic properties. A few reminders from previous
lectures:

Definition 1. A §-ring is a ring A equipped with a function § : A — A, with axioms
that make the map ¢s (x) = ¢ () = 2P 4+ pd () into a ring homomorphism. An element
x € A is called distinguished if § (x) is a unit (somewhat similar to a uniformizer).

1 Definitions

Without further ado, we move towards the definition of a prism.

Definition 2 (The category of d-pairs). A d-pair is (A,I) where A is a 0-ring (the
d-function is omitted from the notation) and I < A is any ideal. A morphism (A, ) —
(B, J) is a morphism of d-rings A — B that carries [ into J.

Definition 3 (The category of prisms). A prism is a d-pair (A, I) such that:

1. I defines a Cartier divisor (locally principal, generated by a non-zero-divisor),
2. A is derived (p, I)-complete (in particular p, I are in rad (A)),
3.pel+o¢(I)A.
The category of prisms is the full subcategory of §-pairs on the prisms.
The prism (A4, I) is called:
1. perfect if A is a perfect d-ring, i.e. ¢ : A — A is an isomorphism,
2. bounded if A/I has bounded p>°-torsion (i.e. A[p>] = A [p™] for m large enough),

3. orientable if I is principal, a choice of a generator is called an orientation,



4. crystalline if I = (p), in particular bounded and orientable.

Example 4 (Crystalline). For A a p-torsion-free and p-complete é-ring, e.g. Z,, the
pair (A, (p)) is a crystalline prism, and any crystalline prism is of this form.

Example 5 (¢-de Rham). A = Z, [[¢ — 1]] with d-structure ¢ (¢) = ¢?, and I = ([p]q)
is a bounded orientable prism.

Example 6 (Universal oriented). Let Ag = Z {d, 5 (d)_l} be the localization of the

free d-ring on d, and denote A = (Ao);,\ﬂd- Then (A, (d)) is a bounded oriented prism. In
fact, it is the universal oriented prism.

2 Properties & More

The following lemma will mostly be applied for prisms:

Lemma 7. Let (A, I) be a §-pair such that I is locally principal, and p, I are in rad (A),
then TFAE:

1. pelP+¢(I)A,
2. pel+o(I)A,

3. there exists a faithfully flat map of §-rings A B, A’ that is an ind-Zariski localiza-
tion such that TA" = (d) with d distinguished and d,p € rad (A’).

Proof. (1) = (2) is trivial.

(2) = (3): Let (g1,...,9n) = A such that IA[l/g,;] is principal. Denote B =
[TA[1/gi], then A — B is faithfully flat and IB = (d) is principal. Finally define A’
to be the localization along V (p,d) of B, so that d,p € rad (A"). A — B — A’ is still
faithfully flat (flatness is immediate, faithfulness is since d,p € rad (A)). By assumption
p € rad (A), so any localization of A admits a unique compatible §-A-algebra structure
(¢ sends units to units, hence S™'A and {S,¢(S), ¢ (S),...}_lA define the same
localization, and ¢ on the latter is a lift of Frobenius). A’ is a finite product of such
so it has a unique compatible §-A-algebra structure. By construction A" = (d), and
by assumption we have p € (d, ¢ (d)), therefore by a previous lemma about J-rings, d is
distinguished.

(3) = (1): We can check the condition after faithfully flat base change, thus enough
to check that p € (dP, ¢ (d)) C A’. Since d is distinguished, 0 (d) is a unit, and ¢ (d) =
dP + pé (d), so the condition is satisfied. O



Lemma 8 (Rigidity). Let (A, 1) — (B,J) be a map of prisms. Then I @4 B = J, and
in particular J = IB.

Further, if A — B is a map of 0-rings with B derived (p, I)-complete, then (B,IB) is a
prism iff B[I] = 0.

Proof. The idea is to work locally where the ideals are generated by a distinguished
element and use their irreducibility. Specifically, using the previous lemma we choose
A Z A such that A’ = (d) with d distinguished and d, p € rad (A’). We want to choose
similarly B’ with JB' = (e) etc., such that B — B’ is faithfully flat and, and we have a
map A" — B’ making the square commute. For this take A’ ® 4 B localized at V (p, J)
(which is ff over B), and then apply the previous lemma for it.

A
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By assumption [ is sent to J in B, thus (d) = IB’ C JB' = (e), so that d = ef for some
f € B’. Recall that d is distinguished and p, e € rad (B’), so we get that f is a unit, so
(d) = (e), i.e. IB' = JB'. The result follows by faithfully flat descent.

For the second statement, note that B[I] = 0 iff I ® 4 B = IB. From the first part, if
(B,IB) is a prism then B[I] = 0. If B[I] = 0, then IB is an invertible B-module, so
a Cartier divisor. Also, p € IB + ¢ (I) B follows from the condition on A. Lastly, B is
derived (p, I)-complete by assumption, so (B, IB) is a prism. O

Lemma 9. Let (A, I) be a prism. Then ¢ (I) A is principal and any generator is dis-
tinguished. Moreover, the invertible A-modules ¢* (I) = I ®4.4 A and IP are trivial
(isomorphic to A).

Proof. Tt is enough to find one distinguished generator for ¢ (I) A, since another gen-
erator differs by a unit i.e. also distinguished. By lemma [7}, p € IP + ¢ (I) A, write
p = a+b. We claim that (b) = ¢ (I) A and that b is distinguished. Again using lemma
choose A 5 A’ with TA' = (d). As IA" = (d), we have a = zdP and b = y¢ (d)
for z,y € A’. Enough to show that y is a unit, since then ¢ (I) A’ is generated by
b, and it is distinguished (because ¢ and multiplication by units send distinguished to
distinguished). Since p,d € rad (A’), enough to show that y is a unit in A’/ (p,d), i.e.
A"/ (p,d,y) = 0. Assume not, then by localizing we can assume that y € rad (4). Since
p=a+b=xd + y(d’+pd(d)) we get p(1—yd(d)) = d(dP~!(z+vy)). Since p is
distinguished and y € rad (A’), the LHS is distinguished. Since d is also distinguished,
we get that dP~! (z + y) is a unit, thus d is a unit which contradicts d € rad (4’), and
we are done.

We won’t prove the second part, the idea is that over A/p, ¢* (I) = IP, and p € rad (A)
so they identify in A, thus it suffices to check for ¢* (I). This is checked on closed points,
by passing to (Aperf);\. O



Lemma 10 (Properties of bounded prisms). Let (A,I) be a bounded prism (i.e. A/l
has bounded p™>-torsion), then:

1. A is classically (p, I)-complete.

2. Let M € D (A) be a (p,I)-completely flat A-complex (not in the paper, M derived
(p, I)-complete). Then M is discrete and classically (p, I)-complete. For any n >
0, we have M [I"] =0 and M/I™ has bounded p*>-torsion.

3. The functor B — (B,IB) induces an equivalence from the category of (p,I)-
completely (faithfully) flat §-A-algebras B (not in the paper, B derived (p,I)-
complete), to the category of (faithfully) flat maps (A,I) — (B, J) of prisms.

4. (locally orientable) There exists a (p,I)-completely faithfully flat map of 0-ring
A — B, s.t. IB = (d) for d € B distinguished non-zero-divisor, which can be
chosen to be the derived (p,I)-completion of an ind-Zariski localization of A. In
particular, (A,I) — (B, (d)) is a faithfully flat map of bounded prisms.

Proof. For (1), we have
A= RlimRlim A// (I",p™)
= Rlim Rlim (A4/1") // (»"™)

The first step is using the derived (p, I)-completeness, the second is because I" is locally
generated by non-zero-divisors, the third is because A/I, thus also A/I"™, has bounded
p°°-torsion, and the last since the limits are direct and maps are surjective (Mittag-
Leffler).

The argument for (2) is similar to (1). We first work separately to get the properties for
M/ /I™ using its p-completely flatness, and in particular to get that it is discrete (thus
M [I"] = 0). Then, taking n — oo and using the derived I-completeness we get that M
itself is discrete. Arguing as above we get that it is also classically (p, I)-complete.

For (3), the inverse is of course given by (B,IB) — B (by rigidity), we check that the
functors land where they should. If B is a (p, I)-completely (faithfully) flat J- A-algebra,
then by rigidity it is enough to check that B [I] = 0 which follows from (2). For the
other direction, if (A4,1) — (B,J) is a (faithfully) flat map of prisms, since by rigidiy
J =1B, A — B is in particular (p, I)-completely (faithfully) flat.

For (4), take B to the the derived (p,I)-completion of A’ from lemma (7} By (2) B
is discrete, B/IB has bounded p*-torsion, and B [I] = 0, so by rigidity (B,IB) is a
prism. O



2.1 Perfect Prisms

Lemma 11 (Properties of perfect prisms). Let (A,I) be a perfect prism (¢ is an iso-
morphism), then:

1. I is principal and any generator is a distinguished element.

2. (A, I) is bounded, and in particular A is classically (p, I)-complete (by the previous
lemma,).

Proof. We have seen that ¢ (1) A is principal and any generator is distinguished, and
by assumption ¢ is an isomorphism so the same is true for I. For (2), in general for
d-rings, if ¢ is injective then A is p-torsion-free. Choose a distinguished generator d, we
have seen that perfectness together with p-torsion-freeness imply that A/d has bounded
p°°-torsion. ]

Lemma 12 (Perfection). Let (A,I) be a prism. Denote by Apers = colimy A the per-
fection. Then IApes = (d), where d is distinguished, p,d are non-zero-divisors, and
Apert/d [p>] = Apert/d [p]. In particular the derived (p,I)-completion of Aper, denoted
Ao, agrees with the classical completion, and (A,I)perf = (A, [Ax) is the universal
perfect prism under (A,I).

Proof. As A — Ape factors through ¢, and ¢ (I) A is generated by a distinguished
element, so does I Aperf = (d). The other two properties follow from properties of the J-
ring structure. By p-torsion-freeness we have that the derived and classical p-completions
coincide to give (Aperf);\. Here d is still non-zero-divisor, also the quotient by d' is still
derived and classical p-complete. Therefore we get that the derived and classical d-
completion of (Aperf);\ coincide, and give Ay, = (Aperf)? d) It is now clear that it is a

p7
prism, and the universal property is also obvious. O

Remark 13. We don’t have the time to explain (or define) this, but it is worth remarking
that the functor (A, ) — A/I gives an equivalence of categories from perfect prisms to
perfectoid rings (with inverse R — (Aine (R) , ker 0)).

2.2 Site of Prisms

Theorem 14. The opposite category of bounded prisms (A, I), with topology where cov-
ers are faithfully flat maps of prisms, forms a site.

Proof. There are three axioms to check. First, isomorphisms are covers, which is clear.
Second, composition of covers is a cover, is also clear. Lastly, we need to check that the



pushout of a cover along an arbitrary map is a cover. Assume we have prisms (using
rigidity to determine the ideals)

lc
dff v

(C,IC) "> (D,ID)

and we want to construct the pushout such that d is also faithfully flat. Take D =
A

(B ek C)(
P

(p, I)-completely faithfully flat over C'. By properties of bounded prisms it follows that

D is discrete, and that (C,IC) — (D, ID) is a faithfully flat map of bounded prisms.

One checks that it serves as a pushout of b along c. O

n the derived (p, I)-completion of B ®ﬁ C. By standard properties, D is

)

Theorem 15. The functor that carries (A,I) to A (resp. AJI) is a sheaf for this
topology, with vanishing higher cohomology on any (A, I).

Proof. We denote by (—) the functor (A,1) = A. Let (A,I) — (B,IB) be faithfully
flat map (cover). Denote by N*® the Cech nerve of (B,IB), and we need to check that
(A,I) = A = lima N*® and that higher Rlim vanish. N* is by definition the pushout

of (B, IB) with itself along (A, I) k + 1-times, so as we have seen in the previous proof,
A

Nk = (B®ka+1>( 1y i.e. the derived completion of the derived Cech nerve of A — B.
p7

Thus we get:

A

(p.)

= Rlim Rlim (B¥4541) // (", I")

Rlim N* = Rlim (B®ﬁk+1)
A A

_ . . L k+1 n o yn
= Rlim Rlim (BE5k1) 1/ (o, 1)
=Rlim A// (p", I")

_ AN
- A(p,l)
=A

where in x we use faithfully flat descent. The argument for A/ is similar, use the fact
that X/I = X{/I. O
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