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The goal of this talk is to define prisms, which are some of the main ingredients in this
theory, and to prove some of their basic properties. A few reminders from previous
lectures:

Definition 1. A δ-ring is a ring A equipped with a function δ : A → A, with axioms
that make the map φδ (x) = φ (x) = xp + pδ (x) into a ring homomorphism. An element
x ∈ A is called distinguished if δ (x) is a unit (somewhat similar to a uniformizer).

1 Definitions

Without further ado, we move towards the definition of a prism.

Definition 2 (The category of δ-pairs). A δ-pair is (A, I) where A is a δ-ring (the
δ-function is omitted from the notation) and I C A is any ideal. A morphism (A, I)→
(B, J) is a morphism of δ-rings A→ B that carries I into J .

Definition 3 (The category of prisms). A prism is a δ-pair (A, I) such that:

1. I defines a Cartier divisor (locally principal, generated by a non-zero-divisor),

2. A is derived (p, I)-complete (in particular p, I are in rad (A)),

3. p ∈ I + φ (I)A.

The category of prisms is the full subcategory of δ-pairs on the prisms.

The prism (A, I) is called:

1. perfect if A is a perfect δ-ring, i.e. φ : A→ A is an isomorphism,

2. bounded if A/I has bounded p∞-torsion (i.e. A [p∞] = A [pm] for m large enough),

3. orientable if I is principal, a choice of a generator is called an orientation,
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4. crystalline if I = (p), in particular bounded and orientable.

Example 4 (Crystalline). For A a p-torsion-free and p-complete δ-ring, e.g. Zp, the
pair (A, (p)) is a crystalline prism, and any crystalline prism is of this form.

Example 5 (q-de Rham). A = Zp [[q − 1]] with δ-structure φ (q) = qp, and I =
(
[p]q

)
is a bounded orientable prism.

Example 6 (Universal oriented). Let A0 = Z(p)
{
d, δ (d)−1

}
be the localization of the

free δ-ring on d, and denote A = (A0)∧p,d. Then (A, (d)) is a bounded oriented prism. In
fact, it is the universal oriented prism.

2 Properties & More

The following lemma will mostly be applied for prisms:

Lemma 7. Let (A, I) be a δ-pair such that I is locally principal, and p, I are in rad (A),
then TFAE:

1. p ∈ Ip + φ (I)A,

2. p ∈ I + φ (I)A,

3. there exists a faithfully flat map of δ-rings A ff−→ A′ that is an ind-Zariski localiza-
tion such that IA′ = (d) with d distinguished and d, p ∈ rad (A′).

Proof. (1) =⇒ (2) is trivial.

(2) =⇒ (3): Let (g1, . . . , gn) = A such that IA [1/gi] is principal. Denote B =∏
A [1/gi], then A → B is faithfully flat and IB = (d) is principal. Finally define A′

to be the localization along V (p, d) of B, so that d, p ∈ rad (A′). A → B → A′ is still
faithfully flat (flatness is immediate, faithfulness is since d, p ∈ rad (A)). By assumption
p ∈ rad (A), so any localization of A admits a unique compatible δ-A-algebra structure
(φ sends units to units, hence S−1A and

{
S, φ (S) , φ2 (S) , . . .

}−1
A define the same

localization, and φ on the latter is a lift of Frobenius). A′ is a finite product of such
so it has a unique compatible δ-A-algebra structure. By construction IA′ = (d), and
by assumption we have p ∈ (d, φ (d)), therefore by a previous lemma about δ-rings, d is
distinguished.

(3) =⇒ (1): We can check the condition after faithfully flat base change, thus enough
to check that p ∈ (dp, φ (d)) ⊆ A′. Since d is distinguished, δ (d) is a unit, and φ (d) =
dp + pδ (d), so the condition is satisfied.

2



Lemma 8 (Rigidity). Let (A, I)→ (B, J) be a map of prisms. Then I ⊗AB
∼−→ J , and

in particular J = IB.
Further, if A→ B is a map of δ-rings with B derived (p, I)-complete, then (B, IB) is a
prism iff B [I] = 0.

Proof. The idea is to work locally where the ideals are generated by a distinguished
element and use their irreducibility. Specifically, using the previous lemma we choose
A

ff−→ A′ such that IA′ = (d) with d distinguished and d, p ∈ rad (A′). We want to choose
similarly B′ with JB′ = (e) etc., such that B → B′ is faithfully flat and, and we have a
map A′ → B′ making the square commute. For this take A′ ⊗A B localized at V (p, J)
(which is ff over B), and then apply the previous lemma for it.

A
ff //

��

A′

��
B

ff // B′

By assumption I is sent to J in B, thus (d) = IB′ ⊆ JB′ = (e), so that d = ef for some
f ∈ B′. Recall that d is distinguished and p, e ∈ rad (B′), so we get that f is a unit, so
(d) = (e), i.e. IB′ = JB′. The result follows by faithfully flat descent.
For the second statement, note that B [I] = 0 iff I ⊗A B

∼−→ IB. From the first part, if
(B, IB) is a prism then B [I] = 0. If B [I] = 0, then IB is an invertible B-module, so
a Cartier divisor. Also, p ∈ IB + φ (I)B follows from the condition on A. Lastly, B is
derived (p, I)-complete by assumption, so (B, IB) is a prism.

Lemma 9. Let (A, I) be a prism. Then φ (I)A is principal and any generator is dis-
tinguished. Moreover, the invertible A-modules φ∗ (I) = I ⊗A,φ A and Ip are trivial
(isomorphic to A).

Proof. It is enough to find one distinguished generator for φ (I)A, since another gen-
erator differs by a unit i.e. also distinguished. By lemma 7, p ∈ Ip + φ (I)A, write
p = a+ b. We claim that (b) = φ (I)A and that b is distinguished. Again using lemma 7
choose A ff−→ A′ with IA′ = (d). As IA′ = (d), we have a = xdp and b = yφ (d)
for x, y ∈ A′. Enough to show that y is a unit, since then φ (I)A′ is generated by
b, and it is distinguished (because φ and multiplication by units send distinguished to
distinguished). Since p, d ∈ rad (A′), enough to show that y is a unit in A′/ (p, d), i.e.
A′/ (p, d, y) = 0. Assume not, then by localizing we can assume that y ∈ rad (A). Since
p = a + b = xdp + y (dp + pδ (d)) we get p (1− yδ (d)) = d

(
dp−1 (x+ y)

)
. Since p is

distinguished and y ∈ rad (A′), the LHS is distinguished. Since d is also distinguished,
we get that dp−1 (x+ y) is a unit, thus d is a unit which contradicts d ∈ rad (A′), and
we are done.
We won’t prove the second part, the idea is that over A/p, φ∗ (I) ∼= Ip, and p ∈ rad (A)
so they identify in A, thus it suffices to check for φ∗ (I). This is checked on closed points,
by passing to (Aperf)∧p .
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Lemma 10 (Properties of bounded prisms). Let (A, I) be a bounded prism (i.e. A/I
has bounded p∞-torsion), then:

1. A is classically (p, I)-complete.

2. Let M ∈ D (A) be a (p, I)-completely flat A-complex (not in the paper, M derived
(p, I)-complete). Then M is discrete and classically (p, I)-complete. For any n ≥
0, we have M [In] = 0 and M/In has bounded p∞-torsion.

3. The functor B 7→ (B, IB) induces an equivalence from the category of (p, I)-
completely (faithfully) flat δ-A-algebras B (not in the paper, B derived (p, I)-
complete), to the category of (faithfully) flat maps (A, I)→ (B, J) of prisms.

4. (locally orientable) There exists a (p, I)-completely faithfully flat map of δ-ring
A → B, s.t. IB = (d) for d ∈ B distinguished non-zero-divisor, which can be
chosen to be the derived (p, I)-completion of an ind-Zariski localization of A. In
particular, (A, I)→ (B, (d)) is a faithfully flat map of bounded prisms.

Proof. For (1), we have

A = Rlim
n

Rlim
m

A// (In, pm)

= Rlim
n

Rlim
m

(A/In) // (pm)

= Rlim
n

Rlim
m

A/ (In, pm)

= lim
n

lim
m
A/ (In, pm)

The first step is using the derived (p, I)-completeness, the second is because In is locally
generated by non-zero-divisors, the third is because A/I, thus also A/In, has bounded
p∞-torsion, and the last since the limits are direct and maps are surjective (Mittag-
Leffler).

The argument for (2) is similar to (1). We first work separately to get the properties for
M//In using its p-completely flatness, and in particular to get that it is discrete (thus
M [In] = 0). Then, taking n→∞ and using the derived I-completeness we get that M
itself is discrete. Arguing as above we get that it is also classically (p, I)-complete.

For (3), the inverse is of course given by (B, IB) 7→ B (by rigidity), we check that the
functors land where they should. If B is a (p, I)-completely (faithfully) flat δ-A-algebra,
then by rigidity it is enough to check that B [I] = 0 which follows from (2). For the
other direction, if (A, I) → (B, J) is a (faithfully) flat map of prisms, since by rigidiy
J = IB, A→ B is in particular (p, I)-completely (faithfully) flat.

For (4), take B to the the derived (p, I)-completion of A′ from lemma 7. By (2) B
is discrete, B/IB has bounded p∞-torsion, and B [I] = 0, so by rigidity (B, IB) is a
prism.
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2.1 Perfect Prisms

Lemma 11 (Properties of perfect prisms). Let (A, I) be a perfect prism (φ is an iso-
morphism), then:

1. I is principal and any generator is a distinguished element.

2. (A, I) is bounded, and in particular A is classically (p, I)-complete (by the previous
lemma).

Proof. We have seen that φ (I)A is principal and any generator is distinguished, and
by assumption φ is an isomorphism so the same is true for I. For (2), in general for
δ-rings, if φ is injective then A is p-torsion-free. Choose a distinguished generator d, we
have seen that perfectness together with p-torsion-freeness imply that A/d has bounded
p∞-torsion.

Lemma 12 (Perfection). Let (A, I) be a prism. Denote by Aperf = colimφA the per-
fection. Then IAperf = (d), where d is distinguished, p, d are non-zero-divisors, and
Aperf/d [p∞] = Aperf/d [p]. In particular the derived (p, I)-completion of Aperf , denoted
A∞, agrees with the classical completion, and (A, I)perf = (A∞, IA∞) is the universal
perfect prism under (A, I).

Proof. As A → Aperf factors through φ, and φ (I)A is generated by a distinguished
element, so does IAperf = (d). The other two properties follow from properties of the δ-
ring structure. By p-torsion-freeness we have that the derived and classical p-completions
coincide to give (Aperf)∧p . Here d is still non-zero-divisor, also the quotient by dn is still
derived and classical p-complete. Therefore we get that the derived and classical d-
completion of (Aperf)∧p coincide, and give A∞ = (Aperf)∧(p,d). It is now clear that it is a
prism, and the universal property is also obvious.

Remark 13. We don’t have the time to explain (or define) this, but it is worth remarking
that the functor (A, I) 7→ A/I gives an equivalence of categories from perfect prisms to
perfectoid rings (with inverse R 7→ (Ainf (R) , ker θ)).

2.2 Site of Prisms

Theorem 14. The opposite category of bounded prisms (A, I), with topology where cov-
ers are faithfully flat maps of prisms, forms a site.

Proof. There are three axioms to check. First, isomorphisms are covers, which is clear.
Second, composition of covers is a cover, is also clear. Lastly, we need to check that the
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pushout of a cover along an arbitrary map is a cover. Assume we have prisms (using
rigidity to determine the ideals)

(A, IA) b,ff //

c

��

(B, IB)

��
(C, IC) d,ff // (D, ID)

and we want to construct the pushout such that d is also faithfully flat. Take D =(
B ⊗LA C

)∧
(p,I)

the derived (p, I)-completion of B ⊗LA C. By standard properties, D is
(p, I)-completely faithfully flat over C. By properties of bounded prisms it follows that
D is discrete, and that (C, IC) → (D, ID) is a faithfully flat map of bounded prisms.
One checks that it serves as a pushout of b along c.

Theorem 15. The functor that carries (A, I) to A (resp. A/I) is a sheaf for this
topology, with vanishing higher cohomology on any (A, I).

Proof. We denote by (−) the functor (A, I) = A. Let (A, I) → (B, IB) be faithfully
flat map (cover). Denote by N• the Cech nerve of (B, IB), and we need to check that
(A, I) = A

∼−→ lim∆N
• and that higher Rlim vanish. Nk is by definition the pushout

of (B, IB) with itself along (A, I) k+ 1-times, so as we have seen in the previous proof,
Nk =

(
B⊗

L
Ak+1

)∧
(p,I)

, i.e. the derived completion of the derived Cech nerve of A → B.
Thus we get:

Rlim
∆

Nk = Rlim
∆

(
B⊗

L
Ak+1

)∧
(p,I)

= Rlim
∆

Rlim
n

(
B⊗

L
Ak+1

)
// (pn, In)

= Rlim
n

Rlim
∆

(
B⊗

L
Ak+1

)
// (pn, In)

?= Rlim
n

A// (pn, In)

= A∧(p,I)

= A

where in ? we use faithfully flat descent. The argument for A/I is similar, use the fact
that X/I ∼−→ X∧I /I.
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