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A detailed account of this topic is in [Sil11, see V.1-6]. A short introduction can be
found on [Mie; Li].

1 Introduction to Elliptic Curves

There are various different perspectives, motivations and interesting aspects to elliptic
curves. I will try give (or hint) some of them.

In high school we all learn about lines L and quadratic curves Q: circles/ellipses, parabo-
las and hyperbolas. These are the solutions to polynomials of the form L : ay+bx+c = 0,
and degree 2 respectively. We are then naturally led to consider cubic curves E, that is
solutions of polynomials f (x, y) with deg f = 3. Another interesting direction of gener-
alization is to consider curves over fields or rings other then R or C, such as Q, Fp or
Zp (p-adics), and to look for solutions there, denoted E (R) = {x, y ∈ R | f (x, y) = R}.
(To the algebro-geometric minded, we really mean E = SpecR [x, y] /f .)

We note that some polynomials give singular curves, for example, y2 = x2 looks like
the shape X, which has a node at the origin; and y2 = x3 looks like ≺, which has a
cusp at the origin. We would like to restrict ourselves to smooth (non-singular) curves.
Smooth cubic curves are called elliptic curves, and it turns out that (up to change of
coordinates) any elliptic curve is given by E : y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6,
called the Weierstrass equation (where the ai’s need to satisfy some condition to ensure
smoothness). Furthermore, away from characteristic 2, 3 we can change coordinates
further to E : y2 = x3 +Ax+B (where 4A3 + 27B2 6= 0 to ensure smoothness).

1.1 Group Structure

An especially interesting and useful property of elliptic curves is that they admit an
abelian group structure. To be precise, we need to add a point at ∞ (i.e. projectivize),
usually denoted O, which serves as a 0 for the group structure. The group structure is
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determined as follows: take two points P,Q, connect them by a line, and look for the
third intersection R, then P + Q + R = O. (Using this and P + (−P ) + O = O the
structure is determined, though associativity is not obvious.)
It is worth noting that these operation are rational functions in the coordinates of P,Q,
thus if they are in E (K), then P + Q is also in E (K). That is, the set of K-points
E (K) is a group.
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Figure 1: Addition on E : y2 = x3 − x+ 1 over R (taken from Wikipedia)

2 Elliptic Curves over C

Elliptic curves over C, have a very special property: they admit analytic uniformization.
Let Λ be a lattice in C, (up to rotation and scaling) that is Λ = Z + τZ for τ ∈ C \ R.
We can consider the group quotient C/Λ, which looks like a (real) torus, though note
that it is of complex dimension 1. An interesting observation is that this parameterizes
an elliptic curve over C (as defined above). Define ℘ (z) = 1

z2 +
∑
ω∈Λ,ω 6=0

(
1

(z−ω)2 − 1
ω2

)
(which depends on Λ). Unfortunately I don’t have time to motivate this definition, but
it is worth noting that it converges outside Λ, and Λ-periodic, therefore, descends to
a function C/Λ → C ∪ {∞} (where [0] is mapped to ∞). Furthermore, the derivative
℘′ (z) satisfies the same properties. Remarkably, ℘′ (z)2 = 4℘ (z)3 − g2℘ (z) − g3 for
some g2, g3 ∈ C (which depend on Λ), i.e. the pair (x, y) = (℘ (z) , ℘′ (z)) solves the
Weierstrass equation EΛ : y2 = 4x3 − g2x− g3. In fact, it turns out:

Theorem 1 (analytic uniformization [Sil09, see VI.3.6]). The map C/Λ (℘(z),℘′(z))−−−−−−−→
EΛ (C) (which sends the lattice points to O) is an isomorphism of Lie groups. Moreover,
every elliptic curve E/C is isomorphic to some EΛ.

Remark 2. This isomorphism is not Galois equivariant, so it tell us nothing about the
rational or real points of E.

This gives a whole new arsenal to study elliptic curves over C. As an example, we
can immediately deduce the structure of the torsion of the curve, namely describe the
subgroup of n-torsion points i.e. E [n] = {P ∈ E (C) | nP = O}. From the algebraic
description this is not an easy task. However, using the model C/Λ it is immediate that
the n-torsion points are a

n1 + b
nτ , that is E [n] ∼= Z/n× Z/n.
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3 p-adic Uniformization

We would like to do something similar in the p-adic situation, that is over Qp (in fact this
work over any p-adic field but for simplicity we stick to Qp). We could try and replace
C/Λ by Qp/Λ, but this fails immediately as Qp has no non-zero discrete subgroups.

Nevertheless, Tate had a clever trick. Let’s revisit the case over C. Consider the exponent
function C e2πiz

−−−→ C×. This is clearly surjective homomorphism, with kernel Z ≤ C,
thus C/Z ∼−→ C×. Recall the lattice Λ = Z + τZ, and denote q = e2πiτ , we get an
isomorphism C/Λ ∼−→ C×/qZ (where qZ =

{
. . . , q−1, 1, q, q2, . . .

}
). Further, we sat that

C/Λ (℘(z),℘′(z))−−−−−−−→ EΛ (C) is an isomorphism. We can combine the two isomorphisms to
give an identification of C×/qZ with the points of EΛ; explicitly , as ℘ (z) is Λ-periodic,
we express it as a power series in u = e2πiz (essentially doing Fourier). It is convenient
to do some simple (affine) change of variables (e.g. to get rid of 2πi). Altogether we get
functions X (u) , Y (u) which give an isomorphism C×/qZ (X(u),Y (u))−−−−−−−→ Eq (C). Here Eq
is the elliptic curve after this change of coordinates, called Tate elliptic curve, given by
Eq : y2 +xy = x3 +a4x+a6 where a4, a6 are power series in q. Remarkably, a4, a6, X, Y
are power series in q with integer coefficients.

As we said, Qp/Λ doesn’t work, and we don’t have an analogue for the exponent function.
However, Q×p has many discrete subgroups: let q ∈ Q×p with |q| < 1, i.e. q is in
the maximal ideal m = pZp, then Q×p /qZ is a good candidate. The power series for
a4, a6, X, Y converge, using |q| < 1. Therefore, Eq can be defined over Qp and we have
maps Q×p /qZ

(X(u),Y (u))−−−−−−−→ Eq (Qp).

Theorem 3 (Tate [Sil11, see V.3.1]). Let q ∈ Q×p with |q| < 1. There is an isomorphism

of (p-adic analytic) groups Qp
×
/qZ

(X(u),Y (u))−−−−−−−→ Eq
(
Qp

)
. Furthermore, this isomor-

phism is Galois equivariant, in particular, for any algebraic extension L/Qp we have an
isomorphism L×/qZ

∼−→ Eq (L).

In the complex case, every elliptic curve E/C was isomorphic to some EΛ. In contrast,
not every elliptic curve E/Qp is isomorphic to such Eq. One can see that the j-invariant
(which we didn’t define, but is an isomorphism invariant) satisfies |j (Eq)| =

∣∣∣1q ∣∣∣ > 1.
Therefore, only E/Qp with |j (E)| > 1 have a chance.

In addition, since q ∈ m = pZp, we see that Eq is in fact defined over Zp and not only
over Qp. Thus we can define its reduction to Fp denoted Ẽq. This turns out to have a
singular point, thus it is not an elliptic curve (bad reduction). The singularity type is a
node, which implies that dropping it yields Ẽq,ns ∼= Gm (multiplicative reduction), and
moreover the slopes of the tangents at the singularity are in Fp (split).

Theorem 4 (p-adic uniformization, Tate [Sil11, see V.5.3]). Let E/Qp be an elliptic
curve such that |j (E)| > 1 then
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1. there exists a unique q ∈ Q×p with |q| < 1 such that E ∼= Eq over Qp,

2. furthermore, E ∼= Eq over Qp if and only if E has split multiplicative reduction.

3.1 Application to Tate Modules

The Tate module of an elliptic curve is a very useful invariant. On the one had, many
properties of the curve reflect in its Tate module, and on the other hand it provides an
example of a Galois representation, i.e. a representation of G = Gal

(
Qp/Qp

)
.

Let ` be a prime, which may or may not be equal to p. We can consider the `n-torsion
over the algebraic closure, E [`n] =

{
P ∈ E

(
Qp

)
| `nP = O

}
. The G-action on E

(
Qp

)
restricts to an action on E [`n]. To actually get the Tate module one need to take the
limit over n, but for simplicity we shall work with E [`n] as the result is quite similar.

As a warm up, say instead of looking at E we looked at the multiplicative group Gm,
whose points are Gm

(
Qp

)
= Qp

×. Then Gm [`n] =
{
ζk`n | 0 ≤ k ≤ `n − 1

}
∼= Z/`n

where ζ`n is a primitive root of unity. Furthermore, we have a Galois action. Namely,
any element g ∈ G sends ζ`n to another primitive `n-th root of unity. Therefore we get
that gζ`n = ζ

χ(g)
`n for some χ (g) ∈ (Z/`n)×. So we get a homomorphism χ : G→ (Z/`n)×

called the cyclotomic character (actually the cyclotomic character is the limit over n).

Now, say that E = Eq is a Tate elliptic curve for some |q| < 1, in this case we can
completely compute the Tate module using the isomorphism Qp

×
/qZ

∼−→ Eq
(
Qp

)
. We

have that Eq [`n] =
{

[x] ∈ Qp
×
/qZ |

[
x`
n
]

= [1]
}
, that is we are looking for x ∈ Qp

×

such that x`n ∈ qZ. Choose an `n-th root of q, which for ease of notation we denote by
q`n , then any x = ζa`nq

b
`n is a solution because x`n = qb ∈ qZ, therefore we get

Corollary 5. As a group, Eq [`n] ∼= Z/`n × Z/`n, with basis given by ζ`n , q`n.

We now move to compute the Galois action. Recall that by definition G acts on ζ`n

via the cyclotomic trace, i.e. gζ`n = ζ
χ(g)
`n . Now, as q ∈ Qp is in the base field, it is

Galois invariant, i.e. gq = q. Therefore, g sends q`n to itself multiplied by a root of
unity, i.e. gq`n = ζ

c(g)
`n q`n for some c (g) ∈ Z/`n (which depends on q), analogously to

the cyclotomic character, thus we get

Corollary 6. The G action on the basis of Eq [`n] ∼= Z/`n×Z/`n is given by the matrix(
χ (g) c (g)

0 1

)

so, as a Galois representation Eq [`n] is an extension of Z/`n by Z/`n (1) classified by c.
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