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A detailed account of this topic is in [Silll, see V.1-6]. A short introduction can be
found on [Mie; Li.

1 Introduction to Elliptic Curves

There are various different perspectives, motivations and interesting aspects to elliptic
curves. I will try give (or hint) some of them.

In high school we all learn about lines L and quadratic curves @Q: circles/ellipses, parabo-
las and hyperbolas. These are the solutions to polynomials of the form L : ay+bx+c = 0,
and degree 2 respectively. We are then naturally led to consider cubic curves E, that is
solutions of polynomials f (z,y) with deg f = 3. Another interesting direction of gener-
alization is to consider curves over fields or rings other then R or C, such as Q, F,, or
Zy (p-adics), and to look for solutions there, denoted E (R) = {z,y € R | f (x,y) = R}.
(To the algebro-geometric minded, we really mean F = Spec R[z,y]/f.)

We note that some polynomials give singular curves, for example, y?> = 22 looks like
the shape X, which has a node at the origin; and y? = 2% looks like <, which has a
cusp at the origin. We would like to restrict ourselves to smooth (non-singular) curves.
Smooth cubic curves are called elliptic curves, and it turns out that (up to change of
coordinates) any elliptic curve is given by E : y? + ajzy + agy = 23 + ax? + asx + as,
called the Weierstrass equation (where the a;’s need to satisfy some condition to ensure
smoothness). Furthermore, away from characteristic 2,3 we can change coordinates
further to E : y?> = 23 + Az + B (where 443 4+ 27B? # 0 to ensure smoothness).

1.1 Group Structure

An especially interesting and useful property of elliptic curves is that they admit an
abelian group structure. To be precise, we need to add a point at co (i.e. projectivize),
usually denoted O, which serves as a 0 for the group structure. The group structure is



determined as follows: take two points P, (), connect them by a line, and look for the
third intersection R, then P + @ + R = O. (Using this and P + (—=P) + O = O the
structure is determined, though associativity is not obvious.)

It is worth noting that these operation are rational functions in the coordinates of P, Q,
thus if they are in E (K), then P 4+ @ is also in E (K). That is, the set of K-points

E(K) is a group.
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Figure 1: Addition on E : y? = 23 — 2 4+ 1 over R (taken from Wikipedia)

2 Elliptic Curves over C

Elliptic curves over C, have a very special property: they admit analytic uniformization.
Let A be a lattice in C, (up to rotation and scaling) that is A = Z 4+ 7Z for 7 € C\ R.
We can consider the group quotient C/A, which looks like a (real) torus, though note
that it is of complex dimension 1. An interesting observation is that this parameterizes
an elliptic curve over C (as defined above). Define ¢ (2) = & + D wEA wAD (ﬁ - ﬁ)
(which depends on A). Unfortunately I don’t have time to motivate this definition, but
it is worth noting that it converges outside A, and A-periodic, therefore, descends to
a function C/A — C U {oo} (where [0] is mapped to oco). Furthermore, the derivative
¢’ () satisfies the same properties. Remarkably, ¢’ (2)* = 49 (2)° — gop (2) — g3 for
some gz, g3 € C (which depend on A), i.e. the pair (z,y) = (p(2), ¢ (2)) solves the
Weierstrass equation Fj : y? = 422 — gox — g3. In fact, it turns out:

Theorem 1 (analytic uniformization [Sil09, see VI.3.6]). The map C/A AGQILACIN

En (C) (which sends the lattice points to O) is an isomorphism of Lie groups. Moreover,
every elliptic curve E/C is isomorphic to some E\.

Remark 2. This isomorphism is not Galois equivariant, so it tell us nothing about the
rational or real points of F.

This gives a whole new arsenal to study elliptic curves over C. As an example, we
can immediately deduce the structure of the torsion of the curve, namely describe the
subgroup of n-torsion points i.e. E[n] = {P € E(C)|nP = O}. From the algebraic
description this is not an easy task. However, using the model C/A it is immediate that
the n-torsion points are 21 + 27, that is E [n] 2 Z/n x Z/n.


https://en.wikipedia.org/wiki/File:ECClines.svg

3 p-adic Uniformization

We would like to do something similar in the p-adic situation, that is over Q, (in fact this
work over any p-adic field but for simplicity we stick to Q,). We could try and replace
C/A by Qp,/A, but this fails immediately as Q,, has no non-zero discrete subgroups.

Nevertheless, Tate had a clever trick. Let’s revisit the case over C. Consider the exponent

2miz
function C =— CX. This is clearly surjective homomorphism, with kernel Z < C,
thus C/Z = C*. Recall the lattice A = Z + 77Z, and denote ¢ = €2™7, we get an
isomorphism C/A = C* /¢ (where ¢ = {...,q71,1,q,¢%,...}). Further, we sat that

C/A RGOUAQIN E\ (C) is an isomorphism. We can combine the two isomorphisms to
give an identification of C* /g% with the points of Ej; explicitly , as p (z) is A-periodic,
we express it as a power series in u = 2™ (essentially doing Fourier). It is convenient
to do some simple (affine) change of variables (e.g. to get rid of 27i). Altogether we get

functions X (u),Y (u) which give an isomorphism C* /¢” K@Y ), E,(C). Here E,
is the elliptic curve after this change of coordinates, called Tate elliptic curve, given by
E,: y? + xy = 23 + ayx + ag where ay, ag are power series in ¢. Remarkably, a4, ag, X,Y
are power series in q with integer coefficients.

As we said, Q,/A doesn’t work, and we don’t have an analogue for the exponent function.
However, Q) has many discrete subgroups: let ¢ € Q) with |¢g| < 1, ie. ¢ is in
the maximal ideal m = pZ,, then Q; / ¢% is a good candidate. The power series for
a4,a6, X,Y converge, using |¢| < 1. Therefore, E, can be defined over @, and we have

X(u),Y (u
maps @;/qZ E ) Yw), E, (Qp).

Theorem 3 (Tate [Silll, see V.3.1]). Let ¢ € Q) with |q| < 1. There is an isomorphism

of (p-adic analytic) groups (QTpx/qZ RCIORLCIN

phism is Galois equivariant, in particular, for any algebraic extension L/Q, we have an
isomorphism L* /q% = E, (L).

E, (@) Furthermore, this isomor-

In the complex case, every elliptic curve E/C was isomorphic to some E. In contrast,
not every elliptic curve E/Q), is isomorphic to such E;. One can see that the j-invariant

(which we didn’t define, but is an isomorphism invariant) satisfies |j (Ey)| = ‘%‘ > 1.
Therefore, only E/Q, with |j (E)| > 1 have a chance.

In addition, since ¢ € m = pZ,, we see that I is in fact defined over Z, and not only
over Q,. Thus we can define its reduction to I, denoted Eq. This turns out to have a
singular point, thus it is not an elliptic curve (bad reduction). The singularity type is a
node, which implies that dropping it yields F, ns = G,, (multiplicative reduction), and
moreover the slopes of the tangents at the singularity are in F,, (split).

Theorem 4 (p-adic uniformization, Tate [Silll, see V.5.3]). Let E/Q, be an elliptic
curve such that |j (E)| > 1 then



1. there exists a unique q € Q, with |q| <1 such that E = E, over Qp,

2. furthermore, E = E, over Q, if and only if E has split multiplicative reduction.

3.1 Application to Tate Modules

The Tate module of an elliptic curve is a very useful invariant. On the one had, many
properties of the curve reflect in its Tate module, and on the other hand it provides an

example of a Galois representation, i.e. a representation of G = Gal (@p/ Qp>.

Let ¢ be a prime, which may or may not be equal to p. We can consider the £"-torsion
over the algebraic closure, E [("'] = {P €eE (@p) | ("P = O}. The G-action on E (@p)
restricts to an action on F [("]. To actually get the Tate module one need to take the
limit over n, but for simplicity we shall work with F [¢("] as the result is quite similar.

As a warm up, say instead of looking at E we looked at the multiplicative group G,
whose points are G, (@) = Q,". Then G, [("] = {Ckn |0 <k < — 1} ~ 7./
where (yn is a primitive root of unity. Furthermore, we have a Galois action. Namely,
any element g € G sends (y» to another primitive £"-th root of unity. Therefore we get

that g(m = Cgil(g) for some x (g) € (Z/0™)*. So we get a homomorphism y : G — (Z/{™)*
called the cyclotomic character (actually the cyclotomic character is the limit over n).
Now, say that E = E, is a Tate elliptic curve for some |¢| < 1, in this case we can
completely compute the Tate module using the isomorphism @X /q" = E, (@) We
have that E, [("] = {[x] cQ,/d" | {:L"W} = [1]}, that is we are looking for z € Q,~
such that 2" € ¢%. Choose an £"-th root of ¢, which for ease of notation we denote by
qen, then any =z = anqgn is a solution because =" = ¢* € ¢%, therefore we get

Corollary 5. As a group, E,[("] = Z/0" x Z/0", with basis given by Cm, qen.

We now move to compute the Galois action. Recall that by definition G acts on (g~
via the cyclotomic trace, i.e. g(m = Cgﬁz(g). Now, as ¢ € Q, is in the base field, it is
Galois invariant, i.e. gg = q. Therefore, g sends g to itself multiplied by a root of

unity, i.e. ggm = Cg,(lg)an for some c(g) € Z/¢" (which depends on ¢), analogously to
the cyclotomic character, thus we get

Corollary 6. The G action on the basis of Eq[("] = Z/{" X /"™ is given by the matrix

(x (9) ¢ (9))
0 1

s0, as a Galois representation Eq [("] is an extension of Z/¢" by Z/¢" (1) classified by c.
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