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1 Introduction

Chromatic homotopy theory describes the global structure of the category
of spectra. A key player in this theory is Morava E-theory, which is a
higher height analogue of (p-complete) complex K-theory. In [AS69], Atiyah
and Segal show that the complex K-theory of classifying spaces of groups,
is deeply connected to their representations. Therefore, it can be studied
using character theory. In [HKR00], Hopkins, Kuhn and Ravenel develop
a generalized character theory, which can be used to study the Morava E-
theory of classifying spaces of finite groups. Over the last years, there have
been numerous applications of elliptic curves to chromatic homotopy theory.
We give another such application, in the form of concrete computations of
HKR generalized character theory at height 2.

Organization

Section 2 sets up the theory of chromatic homotopy. We recall many of
the basic results in the field, omitting most of the proofs, with the goal of
introducing Morava K-theory and different flavors of Morava E-theory.
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Section 3 recalls the Atiyah-Segal theorem (Theorem 3.1.1), and explains its
connection to character theory. This section, although not logically neces-
sary for what follows, will serve as a motivation and as a basic example.

Section 4 gives an account of HKR generalized character theory. The main
result for us, which appears in the original paper as [HKR00, Theorem C],
is recalled in Theorem 4.5.3. We give most of the details of the proof,
emphasizing and elaborating on some parts. We hope that this will clarify
the original account, and relate it to the other parts of this work.

Section 5 focuses on height 2. The main contribution of this work is the
explanation of the usage of elliptic curves to carry out explicit computations
of HKR. We conclude with the development of some computer code, in
Macaulay2, that implements parts of this strategy.1
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2 Overview of Chromatic Homotopy Theory

Our goal is to give a quick overview of chromatic homotopy theory. There
are various point of views and approaches to the topic, and we shall highlight
some of them. One of our main goals is to introduce Morava K-theory K (n)
and Morava E-theory of different flavors E (n) and E (k,Γ), and their con-
nection to formal group laws. Our motivation will be the Balmer spectrum
of the sphere spectrum. We will follow the construction of Morava K-theory
and Morava E-Theory, and other related spectra, from the point of view of

1We conjecture that Macaulay3 is necessary for computations at height 3.
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formal group laws, and use them to describe the Balmer spectrum of the
sphere spectrum.

2.1 The Balmer Spectrum

We will start with an algebraic motivation. Let R be a noetherian ring. Con-
sider the symmetric monoidal stable ∞-category Ch (R) of chain complexes
on R. It is then natural to ask how much information about R is encoded in
the category Ch (R). We will try to recover SpecR, as a topological space,
from Ch (R).

Remark 2.1.1. Balmer’s work [Bal05, 6.3] actually recovers the structure
sheaf as well, but we will not consider the structure sheaf.

Definition 2.1.2. A perfect complex is a complex that is quasi-isomorphic
to a bounded complex of finitely-generated projective modules. These ob-
jects are the compact objects in Ch (R), thus they can be defined categori-
cally. Their full subcategory is denoted by Chperf (R).

Definition 2.1.3. Let C be some symmetric monoidal stable ∞-category.
A full subcategory T is thick if:

• 0 ∈ T,

• it is closed under cofibers,

• it is closed under retracts.

Example 2.1.4. Consider the case C = Chperf (R) (e.g. over Z, chain com-
plexes quasi-isomorphic to bounded chain complexes of finitely-generated
free abelian groups). LetK ∈ Ch (R), and define TK = {A ∈ Chperf (R) | A⊗K ∼= 0}.
We claim that TK is thick. Clearly 0 ∈ TK . Let A → B be a morphism
between two complexes in T. Since tensor is a left adjoint, tensoring the
cofiber with K is given by cofib (A→ B)⊗K ∼= cofib (A⊗K → B ⊗K) ∼=
cofib (0→ 0) ∼= 0, therefore the cofiber is indeed in TK . Lastly, if A→ B →
A is the identity and B⊗K ∼= 0, we get that idA⊗K factors through 0, which
implies that A⊗K is 0, so that A ∈ TK .

Definition 2.1.5. A thick subcategory T is an ideal if A ∈ T, B ∈ C =⇒
A ⊗ B ∈ T. Furthermore, it is a prime ideal if it is a proper subcategory,
and A ⊗ B ∈ T =⇒ A ∈ T or B ∈ T. The spectrum of the category is
defined similarly to the classical spectrum of a ring: As a set, SpecC =
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{P prime ideal}. For any family of objects S ⊆ C we define V (S) =
{P ∈ SpecC | S ∩ P = ∅}. We topologize SpecC with the Zariski topology
by declaring those to be the closed subsets. We also denote Supp (A) =
V ({A}).

Example 2.1.6. We continue the example of TK . Clearly if A⊗K ∼= 0 then
also A⊗B ⊗K ∼= 0, so it is an ideal.

Let p be a prime ideal inR in the usual sense, and takeK = Rp (concentrated
at degree 0), and we wish to show that TRp is a prime ideal. Let A,B ∈
Chperf (R) be complexes such that A ⊗ B ∈ TRp , that is A ⊗ B ⊗ Rp is
quasi-isomorphic to 0. We need to show that one of A ⊗ Rp and B ⊗ Rp

is quasi-isomorphic to 0. Note that A ⊗ B ⊗ Rp = (A⊗Rp) ⊗Rp (B ⊗Rp).
Denote S = Rp, which is a local ring with maximal ideal m = pRp and
residue field k = S/m, we are then reduced to showing that for perfect
complexes X = A ⊗ Rp, Y = B ⊗ Rp, such that H∗ (X ⊗S Y ) = 0, either
H∗ (X) = 0 or H∗ (Y ) = 0.

Note that if we base-change to k, this statement is trivial since by Künneth,
0 = H∗ (X/m⊗k Y/m) = H∗ (X/m) ⊗k H∗ (Y/m), and the tensor product
of vector spaces is 0 if and only if one of them is 0. Therefore, it suffices
to prove that for a perfect complex Z over S, H∗ (Z) = 0 if and only if
H∗ (Z/m) = 0.

For the first direction, it is clear that if Z is quasi-isomorphic to 0, then the
(derived) tensor product Z ⊗S k = Z/m is also quasi-isomorphic to 0.

For the other direction, assume that Z/m is quasi-isomorphic to 0. Since Z
is perfect, we can choose it to be bounded

Z = · · · → 0→ Z1
d1−→ · · · dn−2−−−→ Zn−1

dn−1−−−→ Zn → 0→ · · · ,

where each Zi is finitely-generate projective, and over the local ring S, this
also implies that each Zi is in fact free. We will show that Z is quasi-
isomorphic to a complex with only n−1 non-trivial terms, and by induction
we conclude that Z is indeed quasi-isomorphic to 0. We are given that

H∗ (Z/m) = 0, so in particular it is exact at Zn−1/m
dn−1−−−→ Zn/m → 0, i.e.

im dn−1 = Zn mod m. By Nakayama’s lemma we conclude that im dn−1 =

Zn, i.e. Zn−1
dn−1−−−→ Zn is surjective. By the freeness, we conclude that

Zn−1
∼= M ⊕ Zn, under which dn−1 = 0 ⊕ idZn . Since dn−1dn−2 = 0, the

image of dn−1 must land in M . Therefore, Z is quasi-isomorphic to

· · · → 0→ Z1
d1−→ · · · dn−2−−−→M → 0→ 0→ · · · ,
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which has only n− 1 non-trivial terms, and we are done.

Theorem 2.1.7 ([Bal05, 5.6]). The map SpecR→ Spec (Chperf (R)), given
by p 7→ Tp = {A | Ap = 0} is a homeomorphism.

Proposition 2.1.8 (Prime ideals pullback). Let F : C → D be an ex-
act symmetric monoidal functor, between two symmetric monoidal stable
∞-categories. Let P ∈ SpecD be a prime ideal, then F ∗P = F−1 (P) =
{A ∈ C | F (A) ∈ P} is a prime ideal. Moreover, the function we obtain,
F ∗ : SpecD→ SpecC, is continuous.

Proof. We first prove that for P ∈ SpecD, F ∗P ∈ SpecC.

Clearly F (0) = 0 ∈ P since F is exact, so 0 ∈ F ∗P. Since F preserves
cofibers, for A,B ∈ F ∗P, i.e. F (A) , F (B) ∈ P, and a map A → B, we
get F (cofib (A→ B)) = cofib (F (A)→ F (B)) ∈ P. Let A → B → A be a
retract, that is the composition is the identity, s.t. B ∈ F ∗P. We know that
F (A) → F (B) → F (A) is also a retract by functoriality, thus F (A) ∈ P,
that is A ∈ F ∗P. We conclude that F ∗P is indeed a thick subcategory.

Let A ∈ F ∗P, B ∈ C, since F is monoidal, F (A⊗B) = F (A)⊗ F (B) ∈ P,
so A⊗B ∈ F ∗P, that is F ∗P is an ideal.

We claim that F ∗P is a proper subcategory, because an ideal is proper if
and only if it doesn’t contain 1, and since F is symmetric monoidal it sends
1 to 1.

Lastly, assume that A⊗B ∈ F ∗P, again since F is monoidal, F (A⊗B) =
F (A)⊗ F (B) ∈ P, so A ∈ F ∗P or B ∈ F ∗P, that is F ∗P is a prime idea.

Now we show that F ∗ : SpecD → SpecC is continuous. So let V (S) ⊆
SpecC be a closed subset. We have:

(F ∗)−1 (V (S)) = {P ∈ D | F ∗P ∈ V (S)}
=
{
P ∈ D | F−1 (P) ∩ S = ∅

}
= {P ∈ D | P ∩ F (S) = ∅}
= V (F (S))

So (F ∗)−1 (V (S)) is indeed also closed, which shows that F ∗ is continuous.

Now, recall that Ch (R) ∼= ModHR, therefore we can reinterpret the above
theorem as SpecR ∼= Spec

(
Modcomp

HR

)
(where the comp denotes the compact

objects in the category). We shall turn this theorem into a definition:

6



Definition 2.1.9. Let R be an E∞-ring. We define the spectrum of R to
be SpecR = Spec

(
Modcomp

R

)
.

A natural question to ask then is what is the topological space Spec S. Recall
that ModS = Sp, the category of spectra, and that the compact objects in
spectra are the finite spectra Spfin. So, unwinding the definitions, the ques-
tion can rephrased as finding the prime ideals in Spfin, and their topology.
Chromatic homotopy theory provides an answer to this question.

2.2 MU and Complex Orientations

Throughout this section, let E be a multiplicative cohomology theory (that
is, equipped with a map E ⊗ E → E and 1 ∈ E0, which is associative and
unital after taking homotopy groups).

Consider the map S2 → BU (1) classifying the universal complex line bundle.
Concretely, under the identifications S2 ∼= CP1 and BU (1) ∼= CP∞, this map
can be realized as the inclusion CP1 ⊆ CP∞. This map induces a map

Ẽ2 (BU (1))→ Ẽ2
(
S2
) ∼= Ẽ0

(
S0
) ∼= E0 (∗) = E0.

Since E is unital, there is a canonical generator 1 ∈ E0.

Definition 2.2.1. E is called complex oriented if the map Ẽ2 (BU (1))→ E0

is surjective, equivalently, if 1 is in the image of that map. A choice of a
lift x ∈ Ẽ2 (BU (1)) of 1 ∈ E0 is called a complex orientation. (Note that
|x| = −2 as it is in cohomological degree 2.)

Example 2.2.2. Let R be some ring, and consider HR. It is known that
HR∗ (CPn) ∼= R [x] /

(
xn+1

)
and HR∗ (CP∞) ∼= R [[x]], where |x| = −2,

and the maps induced by the inclusions of projective spaces maps x to
x. Therefore we see that x ∈ HR2 (BU (1)) is mapped to x ∈ HR2

(
S2
)

=
R {x}, which is mapped to 1 ∈ HR0 = R. Hence, x is a complex orientation.

Example 2.2.3 (K-Theory Saga: Complex Orientation). Let K be complex
K-theory, then we know that K∗ = Z

[
β±1

]
where β is the Bott element, with

|β| = 2. It is also known (by the Atiyah-Hirzebruch spectral sequence) that
K∗ (CPn) ∼= K∗ [t] /

(
tn+1

)
and K∗ (CP∞) ∼= K∗ [[t]] (here |t| = 0), where the

maps induced by the inclusions of projective spaces maps t to t. We deduce
that β−1t ∈ K2 (BU (1)) is mapped to β−1t ∈ K2

(
S2
)

= Z
{
β−1t

}
, which is

indeed the generator. Therefore x = β−1t is complex orientation for K.
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Example 2.2.4. Recall that MU is constructed as the colimit MU = colim MU (n).
Also, MU (1) ∼= Σ∞−2BU (1). Therefore we get a canonical map Σ∞−2BU (1)→
MU, which gives a cohomology class xMU ∈ MU2 (BU (1)).

Proposition 2.2.5 ([Rav86, 4.1.3]). xMU is a complex orientation for MU.

Theorem 2.2.6 ([Rav86, 4.1.13]). MU is the universal complex oriented
cohomology theory, in the following sense: For any multiplicative cohomology
theory E, there is a bijection between (homotopy classes of) multiplicative
maps MU → E and complex orientations on E. The bijection is given in
one direction by pulling back xMU along a multiplicative map.

Assume that E is complex oriented with a complex orientation x.

Proposition 2.2.7 ([Rav86, 4.1.4]). As E∗-algebras, E∗ (BU (1)) ∼= E∗ [[x]]
and E∗ (BU (1)× BU (1)) ∼= E∗ [[y, z]].

There is a multiplication map for the group U (1), i.e. U (1)×U (1)→ U (1).
We can take the B of this map, and since it commutes with products we
get a map BU (1) × BU (1) → BU (1), which is the universal map that
classifies the tensor product of vector bundles. Therefore we get a map
E∗ (BU (1)) → E∗ (BU (1)× BU (1)), which is completely determined by
the image of x ∈ E∗ [[x]] in E∗ [[y, z]] as above. We conclude that a choice of
a complex orientation on E gives rise to an element FE (y, z) ∈ E∗ [[y, z]].

Proposition 2.2.8 ([Rav86, 4.1.4]). FE is a formal group law on E∗.

Definition 2.2.9. The height of E is simply the height of FE .

Example 2.2.10. We continue with HR from Example 2.2.2. It is known that
the tensor of complex line bundles induces the map

R [[x]] = HR∗ (BU (1))→ HR∗ (BU (1)× BU (1)) = R [[y, z]] ,

given by x 7→ y + z. This is the additive formal group law. It is immediate
that [p] (x) = px. So for R = Q we get that the height of HQ is 0, while for
R = Fp we have px = 0 so the height of HFp is ∞.

Example 2.2.11 (K-Theory Saga: Formal Group Law). We return to complex
K-theory from Example 2.2.3. It is known that the tensor of complex line
bundles induces the map

K∗ [[t]] = K∗ (BU (1))→ K∗ (BU (1)× BU (1)) = K∗ [[u, v]] ,
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given by t 7→ u + v + uv. Note that to comply with the definition of the
formal group law, we should use the isomorphism K∗ (BU (1)) ∼= K∗ [[x]], i.e.
the element x = β−1t. By multiplying by β−1 (recall that the map is of
K∗-modules) we get that

x = β−1t 7→ β−1u+ β−1v + β−1uv = y + z + βyz = FK (y, z) .

By induction we prove that the n-series is [n] (x) = β−1 (1 + βx)n − β−1.
This is clear for n = 1, and we have:

[n+ 1] (x) = x+ [n] (x) + βx [n] (x)

= x+ β−1 (1 + βx)n − β−1 + x (1 + βx)n − x
= β−1 (1 + βx) (1 + βx)n − β−1

= β−1 (1 + βx)n+1 − β−1

Example 2.2.12 (K-Theory Saga: mod-p). By taking the cofiber of the
multiplication-by-p map, we get a spectrum K/p, mod-p K-theory, with
coefficients (K/p)∗ = Fp

[
β±1

]
. It is evident that FK/p (y, z) = y + z + βyz

as well. From the result above, it follows that

[p] (x) = β−1 (1 + βx)p − β−1 = β−1 (1p + βpxp)− β−1 = βp−1xp,

which shows that the height is exactly 1.

A formal group law on E∗ is the same data as a map from the Lazard ring
L, so the complex orientation gives a map L→ E∗. In particular, since MU
is complex oriented, there is a canonical map L→ MU∗.

Theorem 2.2.13 (Quillen, [Rav86, 4.1.6]). The canonical map L → MU∗
is an isomorphism.

2.3 BP, Morava K-Theory and Morava E-Theory

A good principle in homotopy theory (and in many other areas in math) is
to study it one prime at a time. This is possible in homotopy theory due
to the arithmetic square. So, let us fix a prime p. We can form MU(p), the
p-localization of MU.

Theorem 2.3.1 ([Ada74, II 15]). There exists a unique map of ring spectra
ε : MU(p) → MU(p) (depending on the prime p) satisfying:
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• ε is an idempotent, i.e. ε2 = ε,

• ε∗ sends [CPn] ∈ π∗
(
MU(p)

)
to itself if n = pr − 1 and to 0 otherwise.

The map ε : MU(p) → MU(p) gives a cohomology operation, for every X we
have ε∗ : MU∗(p) (X)→ MU∗(p) (X). Denote by BP∗ (X) the image of ε∗.

Theorem 2.3.2 ([Ada74, II 16], [Rav86, 4.1.12]). BP is a cohomology the-
ory, represented by an associative commutative ring spectrum BP (depending
on the prime p), which is a retract of MU(p). The homotopy groups of BP
are BP∗ = Z(p) [v1, v2, . . . ] where |vn| = 2 (pn − 1).

For convenience we denote v0 = p (and indeed |v0| = 2
(
p0 − 1

)
= 0). Since

BP is a retract of MU, it comes with a map MU→ BP, that is, a complex
orientation.

Proposition 2.3.3 ([Rav86, 4.1.12 combined with A2.1.25 and A2.2.4]).
The p-series of the formal group law associated to BP is [p] (x) =

∑
F vnx

pn

(note that the sum on the right hand side is in the formal group law).

Remark 2.3.4 ([Rav92, B.5]). The formal group law on BP has a similar in-
terpretation to that of MU, namely it is the universal p-typical formal group
law. Moreover, the idempotent ε : MU(p) → MU(p) induces an idempotent
on homotopy groups, which can be described as the map that takes a formal
group law to the canonical p-typical formal group law isomorphic to it.

Once we have BP, we can turn to the definition of Morava K-theory and
Johnson-Wilson spectrum (a variant of Morava E-theory).

Definition 2.3.5. Let 0 < n <∞. Morava K-theory at height n and prime
p, denoted by K (p, n) or K (n) when the prime is clear from the context,
is the spectrum obtained by killing p = v0, . . . , vn−1, vn+1, . . . in BP and
inverting vn. Therefore K (n)∗ = Fp

[
v±1
n

]
. We also define K (0) = HQ and

K (∞) = HFp. Similarly, Johnson-Wilson spectrum (sometimes also called
Morava E-theory) at height n and prime p, denoted by E (p, n) or E (n),
is the spectrum obtained by killing vn+1, vn+2, . . . in BP and inverting vn.
Therefore E (n)∗ = Z(p)

[
v1, . . . vn−1, v

±1
n

]
.

Since Morava K-theory and E-theory are obtained from BP by cofibers and
filtered colimits, they are equipped with a map from BP, hence also with a
complex orientation. Then, from Proposition 2.3.3, we get:
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Corollary 2.3.6. The p-series associated to the formal group laws of K (n)
and E (n) are vnx

pn and v0x +F . . . +F vnx
pn respectively. Therefore the

height of K (n) is exactly n. (Note that by Example 2.2.10, this is also true
for K (0) and K (∞).)

We want to describe some properties of Morava K-theory. To do so we first
need some definitions.

Definition 2.3.7. Let R be an evenly graded ring. R is called a graded field
if it satisfies one of the equivalent conditions:

• every non-zero homogenus element is invertible,

• it is a field F concentrated at degree 0, or F
[
β±1

]
for β of positive

even degree.

An A∞-ring E is a field if E∗ is a graded field.

Example 2.3.8. K (n) is a field for 0 ≤ n ≤ ∞.

Proposition 2.3.9. A field E has Künneth, i.e. E∗ (X ⊗ Y ) ∼= E∗ (X)⊗E∗
E∗ (Y ) for any spectra X,Y.

Proposition 2.3.10 ([Lur10, 24]). Let E 6= 0 be a complex oriented coho-
mology theory, whose formal group law has height exactly n, then E⊗K (n) 6=
0. Let E be a field s.t. E ⊗ K (n) 6= 0, then E admits the structure of a
K (n)-module. (Here 0 ≤ n ≤ ∞.)

Example 2.3.11 (K-Theory Saga: Morava K-Theory). As we have seen in
Example 2.2.12, mod-p K-theory, K/p, has height exactly 1 and coefficients
(K/p)∗ = Fp

[
β±1

]
. It is also known that K and K/p, are A∞-ring spectra,

from which it follows that K/p is a field. We deduce that K/p is a K (1)-
module. Since |β| = 2 and |v1| = 2 (p− 1) it is free of rank p− 1.

From this we also deduce some form of uniqueness for Morava K-theory:

Corollary 2.3.12. Let E be a field with E∗ ∼= Fp
[
v±1
n

]
, which is also com-

plex oriented of height exactly n. Then E ∼= K (n) (as spectra).

2.4 Spec S(p) and Spec S

We are now in a position to describe the topological space SpecS. However,
it will be easier to state it first for Spec S(p), and then pullback prime ideals.
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We know that ModS(p)
= Sp(p), and its compact objects are Spfin

(p), the p-
localizations of finite spectra.

Proposition 2.4.1. Let TE be the E-acyclics, i.e.

TE = kerE∗ =
{
X ∈ Spfin

(p) | E∗ (X) = 0
}

=
{
X ∈ Spfin

(p) | X ⊗ E = 0
}
.

Then TE is thick.

Proof. The proof follows the same lines of Example 2.1.4 for the case Chperf (R).

Definition 2.4.2. We define Cp,n = TK(n), the K (n)-acyclics. By the above
proposition, it is thick. Also, Cp,∞ = {0}, which is trivially thick. When the
prime is clear from the context, we write Cn in place of Cp,n.

Proposition 2.4.3 ([Lur10, 26]). For X ∈ Spfin
(p), if K (n)∗ (X) = 0 then

K (n− 1)∗ (X) = 0.

Definition 2.4.4. We say that a spectrum X ∈ Spfin
(p) is of type n (possibly

∞) if its first non-zero Morava K-theory homology is K (n).

Corollary 2.4.5. Cn is the full subcategory of finite p-local spectra of type

> n, that is Cn =
{
X ∈ Spfin

(p) | ∀m ≤ n : K (m)∗ (X) = 0
}

. Therefore, we

also conclude that Cn+1 ⊆ Cn.

Proposition 2.4.6. The inclusions Cn+1 ⊂ Cn are proper.

Remark 2.4.7. The modern proof of this result relies on the periodicity the-
orem [Rav92, 1.5.4]. Using it, we can construct generalized Moore spectra,
which give an example of spectra of type n for every n.

Proposition 2.4.8. If X ∈ Spfin
(p) is not contractible, then it is of finite type.

Therefore
⋂
n<∞ Cn = {0} = C∞.

Proof. Let X be non-contractible. Then HZ∗ (X) 6= 0. Let m be the first
non-zero degree. Using the universal coefficient theorem and the fact that
the spectrum is p-local we get that (HFp)m (X) 6= 0, thus (HFp)∗ (X) 6= 0.
Since X is finite, (HFp)∗ (X) is bounded. The Atiyah-Hirzebruch spec-
tral sequence for X with cohomology K (n) has E2-page given by E2

t,s =
Ht (X; K (n)s). Since K (n)s = Fp for s = 0 mod 2 (pn − 1) and 0 other-
wise, we see that the rows s = 0 mod 2 (pn − 1) are (HFp)∗ (X), and the

12



others are 0. Therefore if we take n such that the period 2 (pn − 1) is larger
then the bound on (HFp)∗ (X), then all differentials have either source or
target 0. Thus, the spectral sequence collapses at the E2-page, and since
(HFp)∗ (X) 6= 0, we get that K (n) (X) 6= 0, i.e. X has type ≤ n.

Proposition 2.4.9. Cn is a prime ideal.

Proof. Recall from Proposition 2.4.1 that we already know that it is thick.
For X,Y ∈ Spfin

(p), by Proposition 2.3.9 we have

K (n)∗ (X ⊗ Y ) = K (n)∗ (X)⊗K (n)∗ (Y ) .

Assume thatX ∈ Cn, that is K (n)∗ (X) = 0. It follows that K (n)∗ (X ⊗ Y ) =
0, i.e. X ⊗ Y ∈ Cn, so Cn is an ideal. Assume that X ⊗ Y ∈ Cn, that is
K (n)∗ (X ⊗ Y ) = 0, therefore one of the terms in the RHS of the equation
must vanish (since they are graded vector spaces), so Cn is a prime ideal.

Theorem 2.4.10 (Thick Subcategory Theorem [HS98, theorem 7]). If T is
a proper thick subcategory of Spfin

(p), then T = Cn for some 0 ≤ n ≤ ∞.

Remark 2.4.11. The proof relies on a major theorem called the Nilpotence
Theorem.

Corollary 2.4.12. SpecS(p) = {C0,C1, . . . ,C∞}, and the closed subsets in
the topology are chains {Ck,Ck+1, . . . ,C∞} for some 0 ≤ k ≤ ∞.

Proof. Follows immediately from the previous results.

We now want to describe SpecS. Note that the p-localization functor L(p)

is a Bousfield localization. As such, it is a left adjoint (its right adjoint is
the inclusion), and in particular preserves cofibers. It is also reduced, i.e.
sends 0 to 0. Now, L(p) is smashing, that is L(p)X = X ⊗ S(p), so it is
also symmetric monoidal. As we have seen in Proposition 2.1.8, under these
conditions we can pullback primes. Since L(p) is smashing and K (p, n) is
p-local for every 0 ≤ n ≤ ∞, we have that K (n)∗

(
X(p)

)
= K (n)∗ (X).

Therefore

Pp,n = L∗(p)Cp,n =
{
X ∈ Spfin | K (p, n)∗ (X) = 0

}
and

Pp,∞ = L∗(p)Cp,∞ =
{
X ∈ Spfin | X(p) = 0

}
13



are prime ideals. Moreover, by definition K (p, 0) = HQ, which implies that
Pp,0 =

{
X ∈ Spfin | HQ∗ (X) = 0

}
. We see that Pp,0 is independent of p,

and we denote it by Spfin
tor. Again, by Proposition 2.1.8, we see that any

chain {Pp,k,Pp,k+1, . . . ,Pp,∞} for some p and 0 ≤ k ≤ ∞, is closed, hence
any finite union of such chain is also closed. We then have the following
theorem, which says that these are all of the prime ideals and all of the
closed subsets.

Theorem 2.4.13 (Thick Subcategory Theorem, [Bal10, 9.5]). SpecS ={
Spfin

tor

}⋃(⋃
p {Pp,1, . . . ,Pp,∞}

)
, and the closed subsets in the topology are

finite unions of chains {Pp,k,Pp,k+1, . . . ,Pp,∞} for some 0 ≤ k ≤ ∞ (i.e.
they may include Spfin

tor).

Remark 2.4.14. The following diagram shows the structure of SpecS. Each
Pp,n, and Spfin

tor, is a point. A line represents that the closure of the point at
the bottom contains the point at the top.

P2,∞ P3,∞ · · · Pp,∞ · · ·

...
...

...

P2,n P3,n · · · Pp,n · · ·

...
...

...

P2,2 P3,2 · · · Pp,2 · · ·

P2,1 P3,1 · · · Pp,1 · · ·

Spfin
tor

Remark 2.4.15. Thick subcategories are interesting for another reason, un-
related to the Balmer spectrum point of view, namely they give a very
powerful proof method. Say we have a property that is satisfied by 0, and is
closed under cofibers and retracts. It follows that the collection of objects
that satisfy it is thick. Then, for example, by the thick subcategory theorem
2.4.10, it is enough to find one object in Cn\Cn+1 that satisfies the property,
to show that all objects in Cn satisfy it.
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2.5 The Stacky Point of View and the Relationship Between
Morava K-Theory and Morava E-Theory

First we will describe, without being precise, another point of view on what
chromatic homotopy theory is about.

There is a stack of formal groups with strict isomorphisms, denoted by Ms
fg.

It can be described as the stack that sends a ring R to the groupoid of formal
group laws, with strict isomorphisms between them. Quillen theorem 2.2.13
tells us that MU∗ is the Lazard ring, that is the universal ring that carries
the universal formal group law. This theorem has a second part, which says
that (MU⊗MU)∗ is the universal ring that carries two formal group laws
and a strict isomorphism between them. Therefore, Ms

fg is represented by
(MU∗, (MU⊗MU)∗).

The geometric points of the stack Ms
fg are precisely the same as Spec S. That

is because for an algebraically closed field of characteristic 0 there is a unique
(up to strict isomorphism) formal group law which is of height 0, namely
the additive formal group law, and for characteristic p there is a unique (up
to strict isomorphism) formal group law of each height 1 ≤ n ≤ ∞.

For a spectrum X, MU∗ (X) is a (MU∗, (MU⊗MU)∗)-comodule, which is
the same as a sheaf over Ms

fg. From this point of view, chromatic homotopy
theory lets us study a spectrum by decomposing it over the stack Ms

fg.

We can restrict ourselves to the stack only over p-local rings, Ms
fg,p, which

is then represented by
((

MU(p)

)
∗ ,
(
MU(p) ⊗MU(p)

)
∗

)
. Similarly to MU,

BP∗ is the universal ring with the universal p-typical formal group law,
and (BP⊗ BP)∗ is the universal ring with two p-typical formal group laws
and a strict isomorphism between them. Since every formal group law is
isomorphic to a unique p-typical one, we know that the stack Ms

fg,p is also
represented by (BP∗, (BP⊗ BP)∗).

It is now reasonable that K (n), obtained from BP by killing the vm’s for
m 6= n and inverting vn, sees the n-th level, and that E (n) obtained in the
same way but only killing vm for m > n, sees the levels ≤ n. Following this
point of view, the following theorem can be proven:

Theorem 2.5.1 ([Lur10, 23, proposition 2]). E (n) and K (0)⊕ · · · ⊕K (n)
are Bousfield equivalent. That is, they have the same acyclics, locals, and
their localization functors are the same.
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2.6 Landweber Exact Functor Theorem

As we have seen, a complex orientation on a cohomology theory, which by
Theorem 2.2.6 is given by a map MU→ E, has an associated formal group
law, which is given by the map L = MU∗ → E∗. Note that this formal
group law is of degree −2, by virtue of the grading on L = MU∗. One
can ask whether the converse is true, namely given a graded ring R and a
formal group law F of degree −2 given by L→ R, is there a complex oriented
cohomology theory whose coefficients are R and the associated formal group
law is F .

A strategy is to define (ER,F )∗ (X) = MU∗ (X)⊗MU∗R. Unfortunately, this
is not always a homology theory. However there is a condition that one can
check, which guarantees that it is.

Definition 2.6.1. L→ R is called Landweber flat if for every prime p, the
image of the sequence p = v0, v1, v2, . . . in R, is regular. That is, for every
prime p and n ≥ 0, vn is not a zero divisor in R/ (v0, v1, . . . , vn−1).

Remark 2.6.2. Recall from Proposition 2.3.3 that for the formal group law
over BP we have [p] (x) =

∑
F vnx

pn . Seemingly vn is a coefficient in
a complicated sum involving F itself. However, modulo (v0, v1, . . . , vn−1)
(which is all we need for Landweber flatness) vn is equal to the coeffi-
cient of xp

n
in the p-series expanded to a usual power series, which may

be much easier to compute. To see this, first of all note that
∑

F vkx
pk =∑

k≤n,F vkx
pk +F

∑
k>n,F vkx

pk . The second term may contribute only pow-
ers higher than pn. Moreover, the first term modulo (v0, v1, . . . , vn−1) is
simply vnx

pn , and the conclusion follows.

Remark 2.6.3. If p is invertible in R, then p = v0 is invertible, and R/p is
already 0, so we don’t need to check v1, v2, . . . .

Theorem 2.6.4 (Landweber Exact Functor Theorem (LEFT), [Lur10, 15,
16]). If L → R is Landweber flat, then ER,F defined above is a homology
theory. Moreover, there are no phantom maps between such spectra, so ER,F
is represented by a spectrum. This spectrum is complex oriented, has coeffi-
cients R, and associated formal group law F .

Example 2.6.5. Johnson-Wilson spectrum E (n) is Landweber flat, since by
Corollary 2.3.6, the p-series has coefficients p = v0, v1, . . . , vn. p is not a zero
divisor in E (n)∗ = Z(p)

[
v1, . . . vn−1, v

±1
n

]
. Then vi is not a zero divisor in

E (n)∗ / (p, v1, . . . , vi−1) ∼= Fp
[
vi, . . . vn−1, v

±1
n

]
. After vn the ring becomes 0

and we are done. For other primes, by Remark 2.6.3 we are done.
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Example 2.6.6. Morava K-theory K (n) for n > 0 is not Landweber flat since
p = v0 is 0 in K (n)∗ = Fp

[
v±1
n

]
.

Example 2.6.7. HZ is not Landweber flat since although p = v0 is invertible,
as we have seen in Example 2.2.10 the p-series is px, so v1 is 0 in Z/p = Fp.

We can also ask the following question: given complex oriented cohomology
theory MU → E, such that L → E∗ is Landweber flat, is ER,F equivalent
to E? The answer is yes, at least in some cases.

Theorem 2.6.8. Let E be as above, which is also evenly graded (i.e. E∗ is
an evenly graded ring), then there is an equivalence ER,F → E.

Proof. This is a slight variation on [Lur10, 18, proposition 11]. First note
that for every spectrum X we have MU ⊗ X → E ⊗ X, which induces
MU∗ (X)→ E∗ (X), a map of MU∗-modules. Moreover, since E∗ → E∗ (X)
is a map of E∗-module, the map MU∗ → E∗ makes it a map of MU∗-modules.
Together this gives a map (ER,F )∗ (X) = MU∗ (X)⊗MU∗E∗ → E∗ (X). This
map is a map of homology theories. By [Lur10, 17, theorem 6], this map
lifts to a map of spectra ER,F → E. Since by construction when X = S
the map above is E∗ → E∗ which is an isomorphism, we see that the map
ER,F → E is an equivalence.

Example 2.6.9 (K-Theory Saga: Landweber Flatness). We return to com-
plex K-theory, from Example 2.2.3 and Example 2.2.11. We can take the
completion at the element p ∈ K∗, which gives the spectrum K∧p . This spec-

trum has coefficients
(
K∧p
)
∗ = (K∗)

∧
p =

(
Z
[
β±1

])∧
p

= Zp
[
β±1

]
. The formal

group law, as we have seen, is given by FK∧p (y, z) = y + z + βyz. We claim
that FK∧p /K

∧
p is Landweber flat. Clearly p = v0 is not a zero divisor in

Zp
[
β±1

]
. As we have seen in Example 2.2.12, mod-p the p-series is βp−1xp,

so that v1 = βp−1 which is not a zero divisor Fp
[
β±1

]
. Modulo v1 the ring

is already 0, and we are done. For other primes, by Remark 2.6.3 we are
done. Therefore, by Theorem 2.6.8 we get that K∧p

∼= EK∧p ,FK∧p
.

2.7 Lubin-Tate Deformation Theory

The Johnson-Wilson spectrum E (n), a variant of Morava E-theory we have
considered until now, was constructed from BP. As we noted, it is Landwe-
ber flat, which indicates that there is another approach to constructing it.
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Indeed there is a way to construct a related spectrum, which will be called
the Lubin-Tate spectrum, also a variant of Morava E-theory.

To that end, we first define the category CompRing as the category of com-
plete local rings. The objects are complete local rings (R,m), we also denote
by π : R → R/m the projection. Morphisms ϕ : (R,m) → (S, n) are local
homomorphisms, i.e. a homomorphism ϕ : R → S s.t. ϕ (m) ⊆ n. In
particular it induces a homomorphism ϕ/m : R/m → S/n, which satisfies
ϕ/m ◦ πR = πS ◦ ϕ.

We fix k to be a perfect field of characteristic p (i.e. the Frobenius is an
isomorphism), and Γ a formal group law over k of height n <∞. Lubin and
Tate [LT66] considered a moduli problem associated to Γ/k, described by a
functor Def : CompRing→ Grpds.

Definition 2.7.1. Let (R,m) be a complete local ring and denote by π :
R→ R/m the quotient. A deformation of Γ/k to (R,m), is (G, i), where G is
a formal group law over R, i : k → R/m is a homomorphism of fields, such
that i∗Γ = π∗G. A ?-isomorphism between two deformations to (R,m),
f : (G1, i1) → (G2, i2), is defined only when i1 = i2 = i, and consists of
an isomorphism f : G1 → G2, such that π∗f : i∗Γ = π∗G1 → π∗G2 →
i∗Γ is the identity, i.e. f (x) = x mod m. These assemble to a groupoid
Def (R,m), whose objects are deformations to (R,m), and morphisms are
?-isomorphisms.

Remark 2.7.2. Def (R,m) can be seen as the pullback of the groupoids
FGL (R) and

∐
i:k→R/m {Γ} over FGL (R/m) (where the maps are G 7→ q∗G

and i 7→ i∗Γ respectively).

Proposition 2.7.3 (/definition). The construction Def (R,m) is functorial.

Proof. Let ϕ : (R,m)→ (S, n) be a local homomorphism.

For a deformation (G, i) to (R,m), we define Def (ϕ) (G, i) = (ϕ∗G,ϕ/m ◦ i).
Note that ϕ∗G is a formal group law over S, and ϕ/m ◦ i : k → R/m→ S/n
is a homomorphism. Moreover, (ϕ/m ◦ i)∗ Γ = (ϕ/m)∗ i∗Γ = (ϕ/m)∗ π∗RG =
(ϕ/m ◦ πR)∗G = (πS ◦ ϕ)∗G = π∗Sϕ

∗G, which shows that Def (ϕ) (G, i) is a
deformation to (S, n).

For a ?-isomorphism f : (G1, i1) → (G2, i2), which is the data of an iso-
morphism f : G1 → G2 such that π∗Rf = idi∗Γ is the identity, we need to
define a ?-isomorphism Def (ϕ) (G, i1) → Def (ϕ) (G, i2). Take it to be the
isomorphism ϕ∗f : ϕ∗G1 → ϕ∗G2, which satisfies π∗Sϕ

∗f = (ϕ/m)∗ π∗Rf =
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(ϕ/m)∗ idi∗Γ = id(ϕ/m)∗i∗Γ = id(ϕ/m◦i)∗Γ. The identity idG : (G, i) → (G, i)
is clearly sent to idϕ∗G, and compositions are sent to compositions.

This shows that Def (ϕ) : Def (R,m)→ Def (S, n) is indeed a functor. More-
over, it is clear that Def (idR) is the identity and compositions are sent to
compositions, which shows that Def : CompRing→ Grpds is indeed a func-
tor.

Remark 2.7.4. We recall quickly that the Witt vectors Wk is a ring of
characteristic 0, with maximal ideal (p), and residue field Wk/p ∼= k. For
example, WFp = Zp.

Theorem 2.7.5 ([Rez98, 4.4, 5.10], originally due to [LT66]). The functor
Def lands in discrete groupoids (i.e. Def (R,m) has 0 or 1 morphisms be-
tween objects). Furthermore the functor Def is co-represented, that is there
exists a universal deformation, and the complete local ring can be chosen
(non-canonically) to be Wk [[u1, . . . , un−1]].

Let us unravel what that means. First note that the quotient ofWk [[u1, . . . , un−1]]
by the maximal ideal (p, u1, . . . , un−1) is k. The universal deformation can
be chosen such that the formal group law ΓU over Wk [[u1, . . . , un−1]] satis-
fies π∗ΓU = Γ. The universality means that for (R,m), the assignment

homCompRing (Wk [[u1, . . . , un−1]] , R)→ Def (R,m) , ϕ 7→ ϕ∗ΓU

is an equivalence.

Now, we can form the graded ring Wk [[u1, . . . , un−1]]
[
u±1

]
where |u| = 2.

We can define the formal group law (uΓU ) (x, y) = u−1ΓU (uy, uz), which is
of degree −2, thus we get a map L→Wk [[u1, . . . , un−1]]

[
u±1

]
.

Proposition 2.7.6 ([Rez98, 6.9]). L→Wk [[u1, . . . , un−1]]
[
u±1

]
is Landwe-

ber flat.

Using LEFT 2.6.4, we immediately get:

Corollary 2.7.7. There is a complex oriented cohomology theory E (k,Γ) =
EWk[[u1,...,un−1]][u±1],uΓU , called Lubin-Tate spectrum, with coefficients E (k,Γ)∗ =

Wk [[u1, . . . , un−1]]
[
u±1

]
and associated formal group law uΓU .

This concludes the construction of the Lubin-Tate variant of Morava E-
theory. It is usually called Morava E-theory of height n, and denoted by
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En, when the field is k = Fpn and the formal group law is the Honda formal
group law of height n. We can compare the Lubin-Tate spectrum with the
previous one, the Johnson-Wilson spectrum.

Proposition 2.7.8 ([Lur10, 23, example 1]). The Lubin-Tate spectrum
E (k,Γ) and Johnson-Wilson spectrum E (n) are Bousfield equivalent.

Example 2.7.9 (K-Theory Saga: Lubin-Tate). We continue the complex K-
theory saga from Example 2.6.9. Take the field k = Fp and the formal group
law Γ (y, z) = y + z + yz, of height n = 1. By the above construction, the
ring of the universal deformation is WFp = Zp. The universal formal group
law of the universal deformation can be taken to be ΓU (y, z) = y + z + yz
(this follows from the proof at [Rez98, 5.10], since here n = 1 so there are
no ui’s). We look at the ring Zp

[
u±1

]
, and at the formal group law over

it (uΓU ) (y, z) = u−1
(
uy + uz + u2yz

)
= y + z + uyz. It is then clear that

the isomorphism Zp
[
u±1

]
→ Zp

[
β±1

]
, sends uΓU to FK∧p . It follows by

Theorem 2.6.8 that K∧p
∼= EK∧p ,FK∧p

∼= E (Fp,Γ), i.e. p-complete K-theory K∧p
is a Lubin-Tate spectrum at height 1.

3 Atiyah-Segal

We now leave the realm of chromatic homotopy theory. One aspect of al-
gebraic topology is to try to capture properties of spaces using algebraic
invariants. One of the most fruitful such invariants is complex K-theory,
denoted K, and one of the most important spaces in homotopy theory is
BG, so it is natural to ask for a description of K (BG) (by Bott periodicity,
we will consider only K = K0). Atiyah and Segal [AS69] gave a description
of this, and more, in the case that G is a compact Lie group, in terms of
representations.

From now we fix a compact Lie group G. Also, a representation means a
finite dimensional unitary representation. We should also note that beyond
this section, we will be mostly interested in finite groups.

3.1 The Atiyah-Segal Theorem

We denote by R (G) the representation ring of G, that is the collection
of virtual representations of G (which can be written as a formal difference
V −U) up to isomorphism, where the addition is given by direct sum and the
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product is given by tensor product. This is an augmented ring ε : R (G)→ Z
by the virtual dimension (i.e. ε (V − U) = dim (V − U) = dimV − dimU).
The augmentation ideal is I = ker ε = {V − U ∈ R (G) | 0 = dim(V − U)}.

Atiyah and Segal showed that one can describe K (BG) in these terms,
namely, it is the completion of R (G) at the ideal I:

Theorem 3.1.1 ([AS69]). K (BG) ∼= R (G)∧I .

We will not prove the theorem, but we will indicate some of the key ingre-
dients.

First of all, to show that objects are isomorphic, we need a map. Before
giving the map actually used in the proof, we describe an easier way to see
where this map comes from. Recall that K (X) ∼= [X,BU× Z]. The data of
an n-dimensional representation of G is the same thing as a homomorphism
G → U (n). Since B is a functor, we get a map BG → BU (n), and by
composing with the injection BU (n) ∼= BU (n) × {n} → BU × Z, we get
a map BG → BU × Z, that is, an element of K (BG). Therefore we get a
map R (G)→ K (BG). The theorem shows that it is a ring homomorphism
which exhibits K (BG) as the completion of R (G) at I.

There is an alternative description of this map. In [Seg68], Segal described a
variant of K-theory, called equivariant K-theory KG. This variant assigns to
a G-space the ring of virtual G-bundles, that is, bundles equipped with an
action of G which is compatible with the action on the base G-space. Note
that KG is no longer homotopy invariant, since it also takes into account
the G-action. First we note the following:

Proposition 3.1.2. KG (∗) = R (G) (where ∗ is equipped with a trivial
G-action).

Proof. This follows from the definitions, since a vector bundle over a point
is just a vector space, and it is equipped with a G-action over the point,
which is just a G representation.

For any G-space X, the projection map pr : X → X/G allows us to pullback
vector bundles on X/G to G-bundles on X. In other words, it induces a
map pr∗ : K (X/G)→ KG (X).

Proposition 3.1.3 ([Seg68, 2.1]). Suppose the action of G on X is free.
Then pr∗ admits an inverse, given by taking a bundle E → X to E/G →
X/G. In particular, K (X/G) ∼= KG (X).
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Now, we have a map of G-spaces given by EG→ ∗. By the above we get:

R (G) ∼= KG (∗)→ KG (EG) ∼= K (EG/G) = K (BG)

It can be shown that this is the same map R (G)→ K (BG) described before,
which exhibits K (BG) as the I-completion of R (G). Atiyah and Segal use
this map and variants to prove the theorem.

Here is a sketch of the proof given by Atiyah and Segal. First of all, we
note that the theorem is proven for the entire K∗ rather than just for
K = K0. Also note that R∗ (G) = K∗G (∗) is a 2-periodic version of the
representation ring (because K∗G also satisfies Bott periodicity). We have
the corresponding 2-periodic version of the augmentation ideal, which we
denote by I∗. They use the Milnor join construction EGn = G ∗ · · · ∗G︸ ︷︷ ︸

n times

and BGn = EGn/G, which has the property that colim EGn → colim BGn
is a model for EG → BG. Then, for any compact G-space X there is
a similar map to the map above: using X × EGn → X we get a map
K∗G (X) → K∗G (X × EGn). All of these are R∗ (G)-modules, and Atiyah
and Segal show that this map factors through the quotient by (I∗)n, to
give a map K∗G (X) / (I∗)n → K∗G (X × EGn). The two sides assemble into
pro-rings, and the maps assemble to a map between the pro-rings:

{K∗G (X) / (I∗)n}n → {K
∗
G (X × EGn)}n

What they actually prove is the strong form:

Theorem 3.1.4 ([AS69]). If K∗G (X) is finite over R∗ (G), then the above
map of pro-rings is an isomorphism.

Their proof has another interesting aspect. Although it is a statement about
the KG of some class of G-spaces, for one specific group G, their proof
involves the KG’s of several groups. In particular, to prove the result for
example for a finite group, their proof involves more general compact Lie
groups. The proof consists of four steps. In every step they show that the
theorem holds for a more general type of group:

• G = U (1) (circle group),

• G = U (1)n (torus group),

• G = U (n),
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• G a general compact Lie group (this step is proven by embedding G
in U (n)).

We note that the first formulation of the Atiyah-Segal theorem 3.1.1, is
indeed a private case of the second formulation Theorem 3.1.4. Take the
case X = ∗. By definition, K∗G (∗) is finite over R∗ (G) = K∗G (∗), so Theo-
rem 3.1.4 holds and we have an isomorphism of pro-rings {K∗G (∗) / (I∗)n}n →
{K∗G (EGn)}n. In particular, after computing the limits lim : Pro Ring →
Ring, we get an isomorphism of rings K∗G (∗)∧I∗

∼−→ K∗G (EG). Taking only
the 0-th cohomology gives the desired isomorphism:

R (G)∧I
∼= KG (∗)∧I

∼−→ KG (EG) ∼= K (EG/G) = K (BG)

3.2 Examples

We compute a few examples in detail, to make the isomorphism more vivid.

3.2.1 U (1), the Circle Group

Take G = U (1), the circle group. It is known that the irreducible represen-
tations are of dimension 1 and labeled by an integer m ∈ Z, i.e. they are
homomorphisms ρm = U (1) → U (1) given by ρm

(
eiθ
)

= emiθ. In partic-
ular, ρ0 = 1 is the trivial representation. It is then clear that for m ≥ 0,
ρ⊗m1 = ρm and ρ⊗m−1 = ρ−m. Therefore the representation ring generated
under (virtual) direct sums and tensor products by ρ1 and ρ−1. Moreover,
ρ1 ⊗ ρ−1 = 1. Denote ρ = ρ1, and we conclude that R (U (1)) = Z

[
ρ, ρ−1

]
.

The augmentation map is the homomorphism ε : R (U (1)) → Z which
sends 1, ρ and ρ−1 to 1. Recall that the augmentation ideal is I = ker ε.
We set t = ρ − 1, which clearly belongs to I. We can also write then

R (U (1)) = Z
[
t, (1 + t)−1

]
. Note that ε factors to a map R (U (1)) / (t)→ Z,

which is already an isomorphism, so by the first isomorphism theorem indeed
I = (t).

We compute the completion R (U (1))∧I . Note that in Z [t] /tn, 1+t is already
invertible. The reason is that the formal power series for the inverse is finite
since large enough powers of t are zero, 1

1−(−t) =
∑n−1

m=0 (−t)m is an inverse.

Therefore we see that R (U (1)) /In ∼= Z [t] /tn, and clearly the maps in the
limit diagram send t to t. We get that R (U (1))∧I = limZ [t] /tn ∼= Z [[t]].
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In [Hat17, proposition 2.24], it is shown that K (CPn) ∼= Z [L] / (L− 1)n+1,
where L is the canonical line bundle on CPn. In Example 2.2.3 we denoted
t = L − 1 (warning: there we looked at K∗, now we focus on K), which
allows us to rewrite this as K (CPn) ∼= Z [t] /tn+1. As we noted, the limit is
K (CP∞) ∼= Z [[t]]. We thus see that K (BU (1)) ∼= Z [[t]] where t = L − 1 is
the canonical line bundle minus 1.

The identity map ρ : U (1) → U (1), is mapped to the identity BU (1) →
BU (1) (by functoriality of B), which tautologically corresponds the uni-
versal line bundle L on BU (1). We therefore see that the Atiyah-Segal
map R (U (1)) → K (BU (1)), sends ρ to L, and therefore t = ρ − 1 to
t = L − 1. This shows that the map admits K (BU (1)) ∼= Z [[t]] as the
I = (t)-completion of R (U (1)).

3.2.2 Z/2, Cyclic Group of Order 2

Take G = Z/2. Here we have only two irreducible representations, the
trivial, and ρ (0) = 1, ρ (1) = −1. Also, it is clear that ρ ⊗ ρ is the trivial
representation. Therefore, R (Z/2) = Z[ρ]/

(
ρ2 − 1

)
. Similarly to before, the

augmentation ε : R (Z/2)→ Z sends 1 and ρ to 1, so clearly (ρ− 1) ⊆ I, and
for the same reasoning as in the previous example this is actually an equality.
We change coordinates to t = ρ− 1, and we have R (Z/2) = Z[t]/

(
t2 + 2t

)
,

and I = (t).

We move to computing the completion R (Z/2)∧I . Modulo t2 + 2t, i.e. t2 =

−2t, we have that tn = (−2)n−1 t. Thus In =
(

(−2)n−1 t
)

=
(
2n−1t

)
, so

R (Z/2) /In = Z[t]/
(
t2 + 2t, 2n−1t

)
. We first compute the limit of R (Z/2) /In

in abelian groups. Since the forgetful functor from rings to abelian groups is
a right adjoint, it commutes with limits, so this will give us the abelian group
structure. As an abelian group, R (Z/2) /In is isomorphic to Z⊕Z/2n−1 {t}.
It is then clear that as an abelian group, lim R (Z/2) /In is isomorphic to
Z⊕ Z2 {t}.

We now define a multiplication on Z⊕Z2 {t}, given by (a+ bt) ∗ (c+ dt) =
ac+ (ad+ bc− 2bd)t. It can be checked that it is associative and commuta-
tive. We have homomorphisms of groups Z⊕Z2 {t} → Z[t]/

(
t2 + 2t, 2n−1t

)
,

admitting it as the limit in groups, which are given by sending a + bt
to a +

(
b mod 2n−1

)
t. By construction this homomorphism is actually

a homomorphism of rings (the −2bdt term is explained by the relation
t2 + 2t = 0). Therefore, by the universal property of the limit, we get a map
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Z ⊕ Z2 {t} → lim R (Z/2) /In in rings. After taking the forgetful we know
that it becomes an isomorphism, but the forgetful reflects isomorphisms, so
this is also an isomorphism in rings.

Using the Atiyah-Segal theorem we conclude that

K (RP∞) = K (BZ/2) ∼= Z⊕ Z2 {t} ,

with multiplication given by (a+ bt) ∗ (c+ dt) = ac+ (ad+ bc− 2bd)t.

3.3 Some Character Theory

We restrict ourselves to the case of finite groups G. We recall that rep-
resentations of groups can be studied by their characters. Specifically the
character map χ : R (G)→ Z [χρi ], defined by χρ = tr ρ, is an isomorphism,
where the ring on the right is the ring of functions generated by the irre-
ducible characters (the multiplication of two characters is a character so it
is indeed closed under multiplication).

We also recall that characters are class functions, that is, they are constant
on conjugacy classes. Let L be some field containing all the values of all
characters. Then a natural place to study characters is in the ring of class
functions with values in L, denote by Cl (G;L). Let us phrase this in a
way that will be useful in the next section. G is equipped with a G-action
by conjugation, γ.g = γgγ−1. Equip L with the trivial G-action. Then
Cl (G;L) = homGSet (G,L).

We can of course extend the range of the character map to get an injection
χ : R (G)→ Cl (G;L). The first classical theorem regarding the relationship
between characters and class functions is:

Theorem 3.3.1. After tensoring with L, the character map χ⊗L : R (G)⊗
L
∼−→ Cl (G;L) becomes an isomorphism.

Proof. Similarly to the proof in [Ser77, 9.1] for L = C, we can view Cl (G;L)
as a vector space over L, and the characters are linearly independent, so by
counting them we see that the image of χ⊗L has the dimension of the whole
vector space and we are done.

By definition the value of a character is the trace of a linear transformation
χρ (g) = tr ρ (g) =

∑
λi where λi are the eigenvalues (which exist since the
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representation is unitary). Since g|G| = e, we get ρ
(
g|G|

)
= ρ (e) = id, but

then we get that the eigenvalues of ρ
(
g|G|

)
are on the one hand λ

|G|
i and

on the other hand they are all 1, which means that all the eigenvalues are
roots of unity. Therefore L = Qab = Q (ζ∞) is always a valid choice for L
(regardless of G). To be concrete, we will take this choice.

The Galois group of Qab is Gal
(
Qab/Q

) ∼= Ẑ×. For every m ∈ Ẑ× we
also denote by m ∈ Gal

(
Qab/Q

)
the corresponding element, which can

be described as the homomorphism which raises a root of unity to the
power of m. Similarly it acts on G by taking g to gm. Then, for every
such m and g we have that χρ (gm) = tr ρ (gm) =

∑
λmi = m. (

∑
λi) =

m. (χρ (g)). We replace g with gm
−1

(m is invertible), and rewrite this as

χρ (g) = m.
(
χρ

(
gm
−1
))

. Similarly to this equality, we can define an action

of Gal
(
Qab/Q

)
on Cl

(
G;Qab

)
, by taking a class function f to m.f defined

by (m.f) (g) = m.
(
f
(
gm
−1
))

.

Let us rewrite this action in another way, which will be helpful in the next

section. We note that G ∼= homTopGrp

(
Ẑ, G

)
(continuous homomorphisms).

We get an action of Aut
(
Ẑ
)
∼= Ẑ× on G by pre-composition. Concretely,

m ∈ Ẑ× acts by sending g ∈ G to gm. Since Ẑ× acts on Qab, we get an
action on Cl

(
G;Qab

)
= homGSet

(
G,Qab

)
by acting with m−1 in the source

and with m in the target. It is evident that this is the same action from the
previous paragraph.

As we just saw, the characters are in the fixed points Cl
(
G;Qab

)Gal(Qab/Q)
.

Also, since the rationals are fixed by the action of the Galois group, ratio-
nal linear combinations of characters are in the fixed points. We therefore
conclude that the character map after tensoring with Q lands in the fixed

points, i.e. χ⊗Q : R (G)⊗Q→ Cl
(
G;Qab

)Gal(Qab/Q)
. Moreover, the second

classical theorem is:

Theorem 3.3.2 ([Ser77, Theorem 25]). The map χ ⊗ Q : R (G) ⊗ Q ∼−→
Cl
(
G;Qab

)Gal(Qab/Q)
is an isomorphism.

To conclude, Theorem 3.3.1 tells us that R (G) ⊗ Qab ∼= Cl
(
G;Qab

)
, and

Theorem 3.3.2 tells us that R (G)⊗Q ∼= Cl
(
G;Qab

)Gal(Qab/Q)
.
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4 HKR Generalized Character Theory

As we have seen in the previous section, Atiyah and Segal gave a description
of K (BG) in terms of the representation ring. We have also seen in the
section on chromatic homotopy theory, that complex K-theory is related to
Morava K-theory at height 1 by Example 2.3.11, and to Morava E-theory
at height 1 by Example 2.7.9. Representations can be studied using their
characters, and one may wonder if a similar construction can be used to
study higher analogues of complex K-theory evaluated at BG.

Hopkins, Kuhn and Ravenel showed in [HKR00] that it is indeed possible.
Their paper contains a lot of results, but we will concentrate on Theorem
C. Fix some finite group G. Similarly to the proof of Atiyah-Segal theo-
rem, the actual proof of Theorem C involves a general construction, even
to prove the specific case we are interested in, but it will be easier to state
it first for the specific case. Let E = E (k,Γ) be the Lubin-Tate spectrum
from Corollary 2.7.7, for some perfect field k of characteristic p, and Γ a
formal group law over k of height n. We will also denote by F the formal
group law on E∗ (which is uΓU , as in Corollary 2.7.7). There is some ring
L = L (E∗) (which depends on the spectrum E). It is then possible define
some generalized class functions Cln,p (G;L), which are completely algebraic
and combinatorial (besides the definition of the ring L). Lastly, there is a
character map χGn,p : E∗ (BG) → Cln,p (G;L). This character map has sim-
ilar formal properties to the ordinary character map, namely, similarly to
Theorem 3.3.1, after tensoring with L, the character map

χGn,p ⊗ L : E∗ (BG)⊗ L ∼−→ Cln,p (G;L)

becomes an isomorphism. Similarly to Theorem 3.3.2, there is an action
of Aut

(
Znp
) ∼= (

Z×p
)n

on Cln,p (G;L), and it turns out that the character
map lands in the fixed points. Moreover, we can merely rationalize, which
is given by inverting p, the source, rather tensoring with L. The target is
already rational. It turns out that after rationalization and restricting the
codomain to the fixed points, the map becomes an isomorphism, that is

p−1χGn,p : p−1E∗ (BG)
∼−→ Cln,p (G;L)Aut(Znp)

is an isomorphism.

We will first define some of the objects above, to make things more precise,
and we will see what exactly we need to construct the rest. Once we un-
derstand that, we will give a more general and detailed construction, which
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will allow us to state formally the main theorem, Theorem 4.5.3, which is a
stronger version of the results written above. After that we will introduce
the idea of complex oriented descent, and prove the theorem.

4.1 Towards a Definition of the Character Map

Following [HKR00], we denote by Λr = (Z/pr)n and Λ = Znp .

An element g ∈ G is called p-power-torsion if gp
a

= e for some a. Note that
a conjugation of a p-power-torsion element is again p-power-torsion. We also
define r0 ∈ N to be the minimal r s.t. every p-power-torsion element g is
pr0-torsion, i.e. satisfies gp

r0 = e.

Definition 4.1.1. We define Gn,p to be the set of n-tuples (g1, . . . , gn) of
commuting p-power-torsion elements. It has a G-action by conjugation,
γ. (g1, . . . , gn) =

(
γg1γ

−1, . . . , γgnγ
−1
)
.

Concretely, for r ≥ r0, we have Gn,p = homGrp (Λr, G), with the G-action
by conjugation at the target. In a similar fashion, Gn,p = homTopGrp (Λ, G)
(the homomorphisms are required to be continuous).

Let R be a ring. Equip it with the trivial G-action.

Definition 4.1.2. The class functions are Cln,p (G;R) = homGSet (Gn,p, R),
that is functions from Gn,p to R which are invariant under conjugation.

This is a ring, by defining the operations point-wise. Note that this is
a purely combinatorial construction, just a copy of R for every orbit in
Gn,p/G, that is Cln,p (G;R) ∼=

∏
[α]∈Gn,p/GR.

We would like to construct a character map E∗ (BG) → Cln,p (G;R), for
some R, which depends on r ≥ r0. We will try to unravel what this means,
and find appropriate R’s at the same time. By the above, this is a ho-
momorphism E∗ (BG) →

∏
[α]∈Gn,p/GR. That is, for every [α] ∈ Gn,p/G

we need to provide a homomorphism E∗ (BG) → R. Choose a represen-
tative α ∈ Gn,p = homGrp (Λr, G) (for r ≥ r0). Since B is a functor we
get Bα : BΛr → BG, and then we can take E∗-cohomology to get a ho-
momorphism Bα∗ : E∗ (BG) → E∗ (BΛr). If we had a homomorphism
E∗ (BΛr)→ R, we would indeed get a character map.
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4.2 The E∗-Cohomology of BA and Their Maps

We postpone the discussion of the rings, to give some properties of E∗-
cohomology.

First we describe E∗ (BZ/m). Let ψm : Z/m→ U (1) be the homomorphism
determined by ψm (1) = e2πi/m. This induces a map Bψ∗m : E∗ (BU (1)) →
E∗ (BZ/m). Denote by x ∈ E2 (BZ/m) the cohomology class Bψ∗m (x).

Proposition 4.2.1 ([HKR00, 5.8]). The E∗-cohomology of BZ/m is given
by E∗ (BZ/m) = E∗ [[x]] / ([m] (x)). Write m = spt with s coprime to p,
then this is a free E∗-module of rank pnt (where n was the height).

Proposition 4.2.2. Let Y be a space s.t. E∗ (Y ) is a free E∗-module of
finite rank. Then Y satisfies Künneth with respect to any X, that is, the
map E∗ (X)⊗E∗ E∗ (Y )

∼−→ E∗ (X × Y ) is an isomorphism.

Proof. Look at the functors X 7→ E∗ (X)⊗E∗E∗ (Y ) and X 7→ E∗ (X × Y ).
Both of them are manifestly homotopy invariant. Since E∗ (Y ) is free, it is
also flat, and so both functors satisfy Mayer-Vietoris. Both functors send
arbitrary wedges to arbitrary products, since tensor with a free finite rank
module commutes with arbitrary products. We conclude that they are both
cohomology theories. Moreover, they agree on X = ∗, and therefore are
isomorphic.

Using both propositions we can bootstrap to arbitrary finite abelian groups.

Proposition 4.2.3 ([HKR00, 5.8]). Let A be an abelian group, and write
|A| = spt for s coprime to p. Then E∗ (BA) is a free E∗-module of rank pnt,
and BA satisfies Künneth. Specifically, for A = Z/m1 ⊕ · · · ⊕ Z/ml:

E∗ (BZ/m1 × · · · × BZ/ml) ∼= E∗ [[x1, . . . , xl]] / ([m1] (x1) , . . . , [ml] (xl)) .

Proof. A finite abelian group is the product of finite cyclic groups. Since B
commutes with products, we can induct on the number of components in
the product, and the proof follows by the two previous propositions.

Recall that the formal group law on E∗ was defined by taking the E∗ (B−)
of the multiplication map U (1)× U (1)→ U (1). That is, this map induces
the map x 7→ F (y, z) = y +F z on the cohomology.
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By pre-composing with the diagonal, and doing this for k-copies of U (1),

we see that the multiplication-by-k map U (1)
k→ U (1) induces the map

E∗ [[x]]→ E∗ [[y]] given by x 7→ [k] (y).

Let k :
⊕t

i=1 U (1)→
⊕s

j=1 U (1) be the map given on the i, j-th coordinate
by multiplication-by-kij . Taking E∗ (B−) gives a map E∗ [[x1, . . . , xs]] →
E∗ [[y1, . . . , yt]] given by xj 7→

∑
F [kij ] (yi). From this it follows that:

∑
j,F

[lj ] (xj) 7→
∑
j,F

[lj ]

∑
i,F

[kij ] (yi)


=
∑
j,F

∑
i,F

[kijlj ] (yi)

=
∑
i,F

∑
j

kijlj

 (yi)

Let k :
⊕t

i=1 Z/mi →
⊕s

j=1 Z/µj be given on the i, j-th coordinate by
multiplication-by-kij (where kij is defined only modulo µj). Recall the
maps ψm : Z/m → U (1) given by 1 7→ e2πi/m. We look at the maps⊕t

i=1 ψmi :
⊕t

i=1 Z/mi →
⊕t

i=1 U (1), and similarly
⊕s

j=1 ψµj . The com-

position
(⊕s

j=1 ψµj

)
◦ k is given on the i, j-th coordinate by 1 7→ kij 7→

e2πikij/µj . Define a map k :
⊕t

i=1 U (1)→
⊕s

j=1 U (1), by letting the i, j-th
coordinate being the multiplication-by-kij map (where we choose some lift
of kij from Z/µj to Z). We then get the commutative diagram:⊕t

i=1 U (1)
⊕s

j=1 U (1)

⊕t
i=1 Z/mi

⊕s
j=1 Z/µj

k

⊕t
i=1 ψmi

k

⊕s
j=1 ψµj

By taking E∗ (B−) we get the commutative diagram:

E∗ [[y1, . . . , yt]] E∗ [[x1, . . . , xs]]

E∗ [[y1, . . . , yt]] / ([mi] (yi)) E∗ [[x1, . . . , xs]] / ([µj ] (xj))

Where the vertical maps are given by yi 7→ yi and xj 7→ xj . We have
computed the upper map before, and since the vertical maps are surjections,
we conclude:
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Proposition 4.2.4. Let k :
⊕t

i=1 Z/mi →
⊕s

j=1 Z/µj be given on the i, j-
th coordinate by multiplication-by-kij. After taking E∗ (B−), it induces the
map given by xj 7→

∑
F [kij ] (yi). Moreover, for integers l1, . . . , ls, it gives∑

j,F [lj ] (xj) 7→
∑

i,F

[∑
j kijlj

]
(yi).

Remark 4.2.5. Note that the kij ’s are defined only modulo Z/µj , but [kij ] (yi)
requires us to choose a lift to Z. We see that the result is independent of
the lift.

4.3 The Rings Lr (E
∗) and L (E∗)

As we have seen, to construct the character map we needed a ring R together
with homomorphisms E∗ (BΛr) → R. We will construct such a ring, Lr =
Lr (E∗). Moreover, we will take a colimit to construct a ring L = L (E∗).

Recall that E∗ (BU (1)) = E∗ [[x]], where x is the complex orientation. For
any homomorphism α : Λr → U (1), we can take E∗ (B−) to get Bα∗ :
E∗ (U (1)) → E∗ (BΛr). Let Sr = {Bα∗ (x) | α : Λr → U (1) , α 6= 1} ⊆
E∗ (BΛr).

Definition 4.3.1. We define Lr = S−1
r E∗ (BΛr). There is indeed a map

E∗ (BΛr)→ Lr, namely the localization map.

We wish to describe the above construction with coordinates, to make it
more explicit. Recall that E∗ (BΛr) ∼= E∗ [[x1, . . . , xn]] / ([pr] (x1) , . . . , [pr] (xn))
by Proposition 4.2.3. Let Λr

α→ U (1) be a homomorphism. Since it lands in

the pr-torsion, it factors as Λr
k→ Z/pr

ψpr→ U (1), where k is given on the i-th
coordinate by multiplication-by-ki. The condition α 6= 1 amounts to the con-
dition (k1, . . . , kn) 6= 0 mod pr. By Proposition 4.2.4, the induced map is
given by Bα∗ (x) =

∑
F [ki] (xi). Therefore Sr = {

∑
F [ki] (xi) | (k1, . . . , kn) 6= 0 mod pr}.

Proposition 4.3.2. The map E∗ (BΛr)→ E∗ (BΛr+1) induced by the pro-
jection Λr+1 → Λr, lifts to a map Lr → Lr+1.

Proof. The projection Λr+1 → Λr is given by the multiplication-by-1 on each
coordinate, so again by Proposition 4.2.4 they induce the maps E∗ (BΛr)→
E∗ (BΛr+1), given by xi 7→ xi. Moreover

∑
F [ki] (xi) ∈ Sr is mapped to∑

F [ki] (xi) ∈ Sr+1. Therefore, once we invert Sr+1 in the target, clearly Sr
are sent to invertibles, so the map lifts to the localization of the source.
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Definition 4.3.3. We define L = L (E∗) = colimLr.

By definition, Aut (Λr) acts on Λr, so by functoriality we get that it also
acts on E∗ (BΛr).

Proposition 4.3.4. The Aut (Λr)-action lifts to an action on Lr.

Proof. Let k : Λr → Λr be an automorphism given by on the i, j-th coor-
dinate by multiplication by kij . Once again, by Proposition 4.2.4, for inte-

gers l1, . . . , ln, the induced map sends
∑

j,F [lj ] (xj) to
∑

i,F

[∑
j kijlj

]
(xi).

Since k is an automorphism, the matrix (kij) is invertible. Therefore, if

(l1, . . . , ln) 6= 0, then also
(∑

j k1jlj , . . . ,
∑

j knjlj

)
6= 0, so if the source is

in Sr, the result is in Sr as well. This shows that action lifts to an action
on Lr.

Using the projection πr : Aut (Λ)→ Aut (Λr) we endow Lr with an Aut (Λ)-
action. By factoring the projection through Aut (Λr+1), we see that the map
Lr → Lr+1 is equivariant with respect to that action. In conclusion:

Proposition 4.3.5. The rings Lr have an Aut (Λ)-action, and the maps
Lr → Lr+1 are equivariant with respect to this action. Therefore L has an
Aut (Λ)-action as well.

One may wonder if the ring Lr is the zero ring. An argument in [HKR00]
shows that this isn’t the case, and even more is true.

Proposition 4.3.6 ([HKR00, 6.5, 6.6, 6.8]). The element p is invertible
in L, so L is a p−1E∗-module. Furthermore, LAut(Λ) = p−1E∗, and L is
faithfully flat over it. Moreover, this holds when L is replaced with Lr.

4.3.1 Algebro-Geometric Interpretation

First we wish to simplify the situation a little bit. Recall from Corol-
lary 2.7.7 that we have a formal group law F = uΓU over E (k,Γ)∗ =
Wk [[u1, . . . , un−1]]

[
u±1

]
. This came from the computation E (k,Γ)∗ (BU (1)) =

E (k,Γ)∗ [[x]] with |x| = −2. It will be more convenient to work with
t = u−1x, which lives in degree 0, similarly to Example 2.2.11. On these
elements, the formal group law acts the same as ΓU . By the invertibility
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of u, we can do the computation of Lr with these elements, and the re-
sults will not be affected. Moreover, since everything is defined already over
E0 = Wk [[u1, . . . , un−1]], we can do all the computations over it, which will
give the ring L0

r , the 0-th degree part of Lr, and add u±1 at the end to get
back Lr.

The formal group law ΓU over E0, gives a formal group G = Spf E0 [[t]] with
multiplication G × G → G. By definition, the pr-torsion elements in G, is
the scheme-theoretic kernel of the multiplication-by-pr map [pr] : G → G,
that is G [pr] = Spec

(
E0 [[t]] / ([pr] (t))

)
= SpecE0 (BZ/pr). Since ΓU is of

height n, the leading term of the pr-series, is tp
rn

, which by a variant of
Weierstrass preparation (see [HKR00, 5.1]) shows that G [pr] is of rank prn.
We also see that SpecE0 (BΛr) = (G [pr])n.

Inverting Sr is equivalent to inverting their 0-th graded analogues S0
r ={∑

ΓU
[ki] (ti) | (k1, . . . , kn) 6= 0 mod pr

}
. Algebro-geometrically, this is equiv-

alent to restricting to the open subset where all the functions
∑

ΓU
[ki] (ti)

don’t vanish. That is, SpecL0
r is the open subset of n-tuple of points in

G [pr], i.e. n points in the pr-torsion, which are linearly independent. In
fact, the points of G [pr], as a group, are isomorphic (non-canonically) to
(Z/pr)n = Λr, so this means that the n points are not only linearly inde-
pendent, but also span, that is they form a basis.

Moreover, if
∑

ΓU
[ki] (ti) = 0 then also

∑
ΓU

[pki] (ti) = [p]
(∑

ΓU
[ki] (ti)

)
=

0. So, if any pki is not 0 modulo pr, inverting
∑

ΓU
[pki] (ti) already inverts∑

ΓU
[ki] (ti). Well, pki = 0 mod pr if and only if ki = 0 mod pr−1, which

shows that we can invert only those where all ki’s are a multiple of pr−1.
Since there are n ki’s, each of them can take any of p values (numbers which
are a multiple of pr−1), and not all 0, we need to invert only pn−1 elements.

The description of SpecL0
r as a basis for Λr also shows where the Aut (Λr)

action comes from, it just changes the basis by multiplying by an invertible
matrix.

Example 4.3.7 (K-Theory Saga: The Ring Lr). We continue with complex
K-theory. Recall from Example 2.7.9 that K∧p

∼= E (Fp,Γ), where Γ is the
multiplicative formal group law, Γ (y, z) = y + z + yz. That is, p-complete
K-theory is a Lubin-Tate spectrum at height n = 1, so the the construction
above applies to it. It is worth noting that the computation here should
be related to Atiyah-Segal, although there we considered K itself, and here
K∧p , and as we will see we will indeed get that L is a natural place to study
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characters in a p-complete situation.

In Example 2.6.9, we saw that
(
K∧p
)
∗ = Zp

[
β±1

]
. As in Section 4.3.1, it is

easier to work with the element t = β−1x and the formal group law u+v+uv
over

(
K∧p
)

0
= Zp. The n-series then is [n] (t) = (1 + t)n − 1.

In our case Λr = Z/pr, and we have
(
K∧p
)0

(BZ/pr) ∼= Zp [[t]] / ([pr] (t)) =

Zp [[t]] /
(

(1 + t)p
r

− 1
)

. Again, by a variant of Weierstrass preparation (see

[HKR00, 5.1]) the inclusion Zp [t] → Zp [[t]] induces an isomorphism of the

ring above to Zp [t] /
(

(1 + t)p
r

− 1
)

. To make the computation easier, we

change variable s = 1 + t, to work with the ring Zp [s] /
(
sp
r − 1

)
.

We note that this is in accordance with the algebro-geometric point of view
from Section 4.3.1, as the spectrum of this ring is isomorphic as a group
scheme to the group of roots of unity of order pr.

Under this change of variables, Sr =
{
sk − 1 | 0 < k < pr

}
. By Proposi-

tion 4.3.6, p is invertible in the localization, so we might as well invert it
before inverting Sr. We then denote R = Qp [s] /

(
sp
r − 1

)
, and our goal is to

compute Sr
−1R. Denote by Φk (s) the k-th cyclotomic polynomial, and by

ζk a primitive k-th root of unity. Recall that sp
r − 1 =

(
sp
r−1 − 1

)
Φpr (s).

Therefore we have a quotient map R → Qp [s] / (Φpr) ∼= Qp (ζpr), and we
claim that it admits the target as the Sr-localization of the source.

First, note that sk − 1 ∈ Sr is sent to ζkpr − 1, and since 0 < k < pr, this is
not zero. Since the codomain is a field, this is invertible, so by the universal
property of localization, we get a map Sr

−1R→ Qp [s] / (Φpr).

Second, look at the map Qp [s] → Sr
−1R (the composition of the quotient

and localization maps). We took the quotient by sp
r − 1, and inverted

sp
r−1 − 1, so Φpr (s) = sp

r−1

spr−1−1
is zero in Sr

−1R as well. Thus, the map

factors to a map Qp [s] / (Φpr) → Sr
−1R, which is clearly an inverse to the

map above.

We conclude that our ring is L0
r = Qp (ζpr). This is again in accordance

with Section 4.3.1, since the points are primitive roots of unity, that is each
point forms a basis for the group of roots of unity.

The whole graded ring is Lr = Qp (ζpr)
[
β±1

]
. From this it is also easy to

see that L = Qp (ζp∞)
[
β±1

]
.
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4.4 The Generalized Class Functions Ring

As in the case of Atiyah-Segal, in order to establish Theorem C, that is, the
result on the character map described in the introduction to this section, we
need to formulate a more general theorem. The theorem will also depend on
a G-space X, and the proof will use this freedom in a crucial way. Moreover,
the proof will rely on passing to other subgroups as well, although unlike in
Atiyah-Segal’s proof, it will only use abelian subgroups of G. To this end,
we define the generalized objects we need.

Let X be a finite G-CW complex. Recall from Section 4.1 that for r ≥ r0, we
have Gn,p = homGrp (Λr, G), with the G-action by conjugation. Note that
for α ∈ Gn,p, X imα is the fixed points of X at the n-tuple (g1, . . . , gn) which
is represented by α, so the following definition is independent of r ≥ r0.

Definition 4.4.1. The fixed point space ofX is Fixn,p (G,X) =
∐
α∈Gn,p X

imα.

This space has a G×Aut (Λr)-action, described below.

Fixn,p (G,X) admits a G-action, where γ ∈ G sends x ∈ X imα to γx ∈
X im γ.α. This is well defined, since if x fixed by α, i.e. gix = x, then
γgiγ

−1γx = γx, so γx is fixed by γ.α. Moreover, it admits an Aut (Λr)-
action. Let ϕ ∈ Aut (Λr), for any α ∈ Gn,p, clearly imα = im (α ◦ ϕ),
so x ∈ X imα is mapped by ϕ to x ∈ X im(α◦ϕ) (i.e. this action just per-
mutes to coordinates labeled by the α ∈ Gn,p). The actions commute, since
γ. (α ◦ ϕ) = (γ.α) ◦ ϕ, because ϕ acts on the source and γ on the target.
Therefore we have a G×Aut (Λr)-action.

The action on Fixn,p (G,X) gives a G × Aut (Λr)-action of E∗-algebras on
E∗ (Fixn,p (G,X)). As we saw, Lr admits an Aut (Λr)-action, define the
trivial G-action on it, to get a G × Aut (Λr)-action. Take the diagonal
G×Aut (Λr)-action on Lr ⊗E∗ E∗ (Fixn,p (G,X)).

Definition 4.4.2. The class functions are:

Cln,p (G,X;Lr) = (Lr ⊗E∗ E∗ (Fixn,p (G,X)))G

This E∗-algebra still has an Aut (Λr)-action.

Note that for X = ∗, trivial G-space, Fixn,p (G, ∗) = Gn,p as a G-space.
Hence E∗ (Fixn,p (G, ∗)) ∼= homSet (Gn,p, E

∗). Taking the G fixed points
gives homGSet (Gn,p, E

∗) (note that this hom is in GSet). In conclusion, we
get Cln,p (G, ∗;Lr) = homGSet (Gn,p, Lr). This agrees with Definition 4.1.2.
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We give an alternative description of the algebra before taking the G fixed
points. Simply by taking the coproduct out of the cohomology as a product,
and out of the tensor product, we get:

Proposition 4.4.3. Lr⊗E∗E∗ (Fixn,p (G,X)) ∼=
∏
α∈Gn,p

(
Lr ⊗E∗ E∗

(
X imα

))
.

We wish to emphasize the combinatorial nature of the G×Aut (Λr)-action.
To that end, we first formulate a general combinatorial statement:

Proposition 4.4.4. Let H be a group. Let I be some indexing H-set, and
let Y[i] be a collection of H-spaces indexed by I that depend only on the
orbit. Endow

∏
i∈I Y[i] with an H-action by h. (yi)i∈I = (h.yh.i)i∈I . Then(∏

i∈I Y[i]

)H ∼= ∏[i]∈I/H Y
StH(i)

[i] .

Proof. First, the action is indeed well defined since yh.i ∈ Y[i], because i and
h.i are in the same orbit. Requiring that (yi)i∈I is a fixed point amounts
to yi = h.yh.i for all i and h. Note that this condition equates yi only with
values which are in the H-orbit of i. Moreover, the value of yi determines
the whole H-orbit yh.i (by h−1yi). Therefore a fixed point is determined by
one element per orbit, yi, that satisfies yi = h.yi when h.i = i, i.e. when h

is in the stabilizer StH (i). So the condition is simply that yi ∈ Y StH(i)
[i] , and

the conclusion follows.

We now want to apply this to our case.

Proposition 4.4.5. We have:

Cln,p (G,X;Lr)
Aut(Λr)

∼=
∏

[α]∈Gn,p/(G×Aut(Λr))

(
L

StAut(Λr)(α)
r ⊗E∗ E∗

(
X imα

)StG(α)
)

In particular, when X = ∗, we have:

Cln,p (G;Lr)
Aut(Λr) ∼=

∏
[α]∈Gn,p/(G×Aut(Λr))

L
StAut(Λr)(α)
r

Proof. We will take G × Aut (Λr) fixed points of Proposition 4.4.3 in two
steps, first by G then by Aut (Λr). Recall that Lr is fixed by G. The action
on the cohomology part comes from the action on the space, taking x ∈
X imα to γx ∈ X im γ.α. Since this is invertible, this gives a homeomorphism
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between X imα and X im γ.α, which shows that E∗
(
X imα

) ∼= E∗
(
X im γ.α

)
.

Using this isomorphism, we see that E∗
(
X imα

)
depends only on the G-

orbit of α, so we can employ Proposition 4.4.4 for Proposition 4.4.3 with
H = G and I = Gn,p, to get:

Cln,p (G,X;Lr) ∼=
∏

[α]∈Gn,p/G

(
Lr ⊗E∗ E∗

(
X imα

)StG(α)
)

We now have the Aut (Λr)-action. Recall that Aut (Λr) didn’t act on the
space part, since it fixes imα. We are then in the situation of Proposi-
tion 4.4.4 again, for H = Aut (Λr) and I = Gn,p/G, and the general case
follows.

When X = ∗, all fixed points X imα are again trivial, which shows that the
E∗-cohomology is simply E∗, and tensoring with it over E∗ does nothing,
and the specific case follows.

4.5 The General Character Map

We now construct the character map, that also depends on r, which is
omitted from the notation:

χGn,p : E∗ (EG×G X)→ Cln,p (G,X;Lr)

This map is given by a map E∗ (EG×G X) → Lr ⊗E∗ E∗ (Fixn,p (G,X))
which lands in the G fixed points. By Proposition 4.4.3, this is the data of
a map E∗ (EG×G X)→ Lr ⊗E∗ E∗

(
X imα

)
for each α ∈ Gn,p.

Let α ∈ Gn,p, that is α : Λr → G. By functoriality of E, this induces a map
EΛr → EG. Consider the inclusion X imα → X. The multiplication of these
maps gives EΛr ×X imα → EG×X. Since X and EG have a G-action, the
map α : Λr → G induces a Λr-action on them. Moreover, by definition, this
Λr-action restricts to a trivial action on X imα. We equip both sides with
the diagonal Λr-action, which makes the map equivariant, and we get a map
between the Λr orbits. The Λr orbits of the source are BΛr×X imα. Since the
action on the target was pulled form the diagonal G-action, we can further
take the G orbits on the target, to get a map BΛr ×X imα → EG×G X.

Taking E∗-cohomology we get E∗ (EG×G X) → E∗
(
BΛr ×X imα

)
. Since

X was assumed to be a finiteG-CW complex, we have Künneth for the target
by Proposition 4.2.3, so the map is equivalently a map E∗ (EG×G X) →
E∗ (BΛr) ⊗E∗ E∗

(
X imα

)
. Using the localization map E∗ (BΛr) → Lr we
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finally get the desired map E∗ (EG×G X) → Lr ⊗E∗ E∗
(
X imα

)
. This

concludes the construction of the data of the character map.

Proposition 4.5.1 ([HKR00, 6.9]). The map E∗ (EG×G X) → Lr ⊗E∗
E∗ (Fixn,p (G,X)) constructed above lands in the G×Aut (Λr) fixed points.

Therefore, by taking the G fixed points on the target, we indeed get the
desired character map χGn,p : E∗ (EG×G X)→ Cln,p (G,X;Lr), which lands
in the Aut (Λr) fixed points.

Proposition 4.5.2. The character maps are compatible with the maps Cln,p (G,X;Lr)→
Cln,p (G,X;Lr+1), coming from the maps Lr → Lr+1. Therefore, we have a
character map for L, that is χGn,p : E∗ (EG×G X) → Cln,p (G,X;L), which
lands in the Aut (Λ) fixed points.

Proof. We constructed the character map by constructing a map for each α.
It is easy to see that these maps are compatible with the maps Lr → Lr+1,
coming from the projections.

Since p is invertible in L by Proposition 4.3.6, and Aut (Λ) doesn’t change
p−1, it also follows that after inverting p, that is, rationalizing, the map
p−1χGn,p : p−1E∗ (EG×G X) → Cln,p (G,X;L) still lands in the Aut (Λ)
fixed points (and the same is true for Lr in place of L).

We are now in position to state the main theorem. This should remind you
of Theorem 3.3.1 and Theorem 3.3.2.

Theorem 4.5.3 ([HKR00, Theorem C]). First, after tensoring with L,
the character map χGn,p ⊗ L : E∗ (EG×G X) ⊗E∗ L

∼−→ Cln,p (G,X;L) be-

comes an isomorphism. Second, the map p−1χGn,p : p−1E∗ (EG×G X)
∼−→

Cln,p (G,X;L)Aut(Λ) is an isomorphism. Moreover, these statements hold
when L is replaced with Lr, for r ≥ r0.

Corollary 4.5.4. Using Proposition 4.4.5, for the case X = ∗ we get iso-
morphisms

E∗ (BG)⊗E∗ L ∼= Cln,p (G;L) ∼=
∏

[α]∈Gn,p/G

L,

and

p−1E∗ (BG) ∼= Cln,p (G;L)Aut(Λ) ∼=
∏

[α]∈Gn,p/(G×Aut(Λ))

LStAut(Λ)(α),

and these statements hold when L is replaced with Lr, for r ≥ r0.
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The first part of the theorem will be proven in the remaining of the section.

Proof (of the second part). Consider the isomorphism from the first part,
E∗ (EG×G X)⊗E∗L

∼−→ Cln,p (G,X;L). Endowing the source with Aut (Λ)-
action by acting only on L, makes it equivariant. Therefore, there is an
isomorphism on the fixed points. Using LAut(Λ) = p−1E∗, from Proposi-
tion 4.3.6, the fixed points on the source are:

(E∗ (EG×G X)⊗E∗ L)Aut(Λ) = E∗ (EG×G X)⊗E∗ LAut(Λ)

= E∗ (EG×G X)⊗E∗ p−1E∗

= p−1E∗ (EG×G X)

So indeed p−1E∗ (EG×G X)
∼−→ Cln,p (G,X;L)Aut(Λ) is an isomorphism.

(The exact same proof works when L is replaced with Lr, for r ≥ r0.)

4.6 The Idea of the Proof and Complex Oriented Descent

Our next goal is to prove the first part of Theorem 4.5.3. That is, for a
finite group G and a finite G-CW complex X, the character map becomes an
isomorphism after tensoring with L, i.e. χGn,p⊗L : E∗ (EG×G X)⊗E∗ L

∼−→
Cln,p (G,X;L) is an isomorphism, and the same with L replaced with Lr,
for r ≥ r0. One may wonder why we had to introduce the G-space X into
the construction, in order to prove the case of interest, X = ∗. The reason
is, that there is a trick, called complex oriented descent, that allows us to
reduce to the case of G-spaces X with abelian stabilizers. Using this and
some further ideas we reduce to the case where G is abelian, and X = ∗.
That is, introducing the space X into the construction, allows us to reduce
the statement to abelian groups.

To be more explicit, this is the strategy. We will consider the character map
as a natural transformation between functors of pairs (G,X), and then we
will follow these steps:

• Use complex oriented descent to reduce to X with abelian stabilizers,

• Use Mayer-Vietoris to reduce to spaces X = Dn×G/A with A abelian,

• Use homotopy invariance to reduce to X = G/A,

• Use induction to reduce from (G,G/A) to (A, ∗),
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• Prove for (A, ∗).

This strategy will be formulated as a theorem later, after we introduce com-
plex oriented descent. To introduce it, we need some definitions.

Definition 4.6.1. Let ξ be a d-dimensional complex vector bundle over a
space X. The flag bundle F (ξ)→ X is the bundle of complete flags in ξ.

The fiber over a point can be described as an (ordered) d-tuple (`1, . . . , `d)
of orthogonal lines. To define it precisely, we can take the d-fold power of
the projective bundle P (ξ), and restrict to the sub-bundle of orthogonal
lines. We note that for a trivial bundle X × V → X, we have F (X × V ) ∼=
X × F (V ), i.e. the flags are computed fiber-wise.

Definition 4.6.2. Let C∗ : Sop → GrAb be a contra-variant functor from
spaces to graded abelian groups. C∗ is said to satisfy complex oriented
descent, if for every spaceX and bundle ξ overX, C∗ sends the diagramX ←
F (ξ) ⇔ F (ξ) ×X F (ξ), to an equalizer diagram C∗ (X) → C∗ (F (ξ)) ⇒
C∗ (F (ξ)×X F (ξ)).

We note that if ξ is a G-vector bundle over the G-space X, then F (ξ)→ X
is also a G-bundle, since G acts unitarily. We also recall that every finite
groupG has a faithful finite dimensional complex representation. The reason
complex oriented descent is useful is the following.

Proposition 4.6.3. Let X be a G-space, and let ρ : G → V be a faithful
representations. Then the G-space F (X × V ) ∼= X × F (V ) has abelian
stabilizers.

Proof. Let (x, (`i)) be a point in X × F (V ). We wish to show that its sta-
bilizer is abelian. Let g, h ∈ G be two elements which fix the point, that
is, g.x = x = h.x and ρg (`i) = `i = ρh (`i). We see that the linear trans-
formations ρg : V → V and ρh : V → V are simultaneously diagonalizable
w.r.t to the decomposition (`i) of V . Therefore, by a classical result in linear
algebra, they commute, ρgρh = ρhρg, i.e. ρgh = ρhg. Since ρ is faithful, we
get that gh = hg.

Definition 4.6.4. Let H ≤ G be a subgroup, and let Y be an H-space. We
define the G-space G ×H Y as follows. Define an H-action on G by h.g =
gh−1. This gives a diagonal action on G × Y , i.e. h. (g, y) =

(
gh−1, h.y

)
.

The orbits are G ×H Y . This space has a G-action by γ. (g, y) = (γg, y).
This is well defined, since γ.

[
gh−1, h.y

]
=
[
γgh−1, h.y

]
= [γg, y] = γ. [g, y].
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Definition 4.6.5. Let C be the category whose objects are pairs (G,X)
where G is a finite group and X is a finite G-CW complex. The mor-
phisms in C are generated from the following: First, the usual morphisms
(G,X)→ (G, Y ). Second, for H < G and Y , we add a morphism (H,Y )→
(G,G×H Y ).

Definition 4.6.6. Let C∗ : Cop → GrAb be a contra-variant functor from
C. We define the following properties of C∗:

• Homotopy invariance - for everyG, the functor C∗ (G,−) isG-homotopy
invariant.

• Mayer-Vietories - for every G, C∗ (G,−) satisfies Mayer-Vietoris.

• Complex oriented descent - for every G, C∗ (G,−) satisfies complex
oriented descent.

• Induction - for every, H ≤ G and H-space Y , the morphism (H,Y )→
(G,G×H Y ) induces an isomorphism C∗ (G,G×H Y )

∼−→ C∗ (H,Y ).
G.

Theorem 4.6.7 ([HKR00, 6.10]). Let C∗, D∗ : Cop → GrAb be functors
satisfying the above properties. Let τ : C∗ → D∗ be a natural transformation
between them. Suppose that τ commutes with the connecting morphisms of
Mayer-Vietoris, and that τ (A, ∗) is an isomorphism for all abelian groups
A. Then τ is a natural isomorphism.

Proof. We will follow the steps of the strategy outlined before (although we
will describe it in the opposite order).

Let G be a group, and A ≤ G an abelian subgroup. The morphism (A, ∗)→
(G,G×A ∗) ∼= (G,G/A), by naturality of τ , induces a commutative square:

C∗ (G,G/A) C∗ (A, ∗)

D∗ (G,G/A) D∗ (A, ∗)

τ(G,G/A) τ(A,∗)

By induction, the horizontal morphisms are isomorphisms. By assumption,
τ (A, ∗) is an isomorphism. We conclude that τ (G,G/A) is an isomorphism.

Since C∗, D∗ are homotopy invariant, for every disk Dn equipped with a
trivial action, the map (G,G/A×Dn)→ (G,G/A) induces an isomorphism.
Similarly to before, by naturality τ (G,G/A×Dn) is an isomorphism.
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Now, let X a finite G-CW complex, s.t. the stabilizer of every point is
abelian. All the cells are then of the form G/A × Dn for some abelian
subgroup A ≤ G and disk Dn. By an induction on the number of cells,
using Mayer-Vietoris and the fact that τ commutes with the connecting
morphisms, (G,X) is an isomorphism.

Lastly, let X be an arbitrary finite G-CW complex. Let V be a faithful G
representation, and consider the bundle X × V → V . By naturality, the
diagram X ← X × F (V ) ⇔ X × F (V ) × F (V ) induces a commutative
diagram:

C∗ (X) C∗ (X × F (V )) C∗ (X × F (V )× F (V ))

D∗ (X) D∗ (X × F (V )) D∗ (X × F (V )× F (V ))

f

α=τ(G,X) β=τ(G,X×F (V )) τ(G,X×F (V )×F (V ))

g

By complex oriented descent, the two rows are equalizer diagrams. By
Proposition 4.6.3, X×F (V ) has abelian stabilizers, hence we already know
that β = τ (G,X × F (V )) is an isomorphism. We can then construct the
map β−1g : D∗ (X) → C∗ (X × F (V )), which by definitions makes the
diagram commute. By the universal property of the equalizer, we get a map
α′ : D∗ (X) → C∗ (X) s.t. the diagram is commutative. The composition
α′α : C∗ (X) → C∗ (X) makes the diagram commute, and since C∗ (X) is
the equalizer, by uniqueness, α′α = idC∗(X). Similarly αα′ : D∗ (X) →
D∗ (X) makes the diagram commute, so αα′ = idD∗(X). This shows that
α = τ (G,X) is invertible, which completes the proof.

4.7 Proof of the Main Theorem

We are going to use the previous results to prove the main theorem, Theo-
rem 4.5.3. Almost all of the proof will work with L replaced by Lr, for r ≥ r0,
without a change, so we state everything for L except for the end where
there is a difference. Recall that we have already proved the second part.
Therefore, what is left to prove is that χGn,p ⊗ L : E∗ (EG×G X) ⊗E∗ L

∼−→
Cln,p (G,X;L) is an isomorphism. We will do this using Theorem 4.6.7.

Denote C∗ (G,X) = E∗ (EG×G X)⊗E∗L, andD∗ (G,X) = Cln,p (G,X;L) =

(Lr ⊗E∗ E∗ (Fixn,p (G,X)))G. Their definition on morphisms (G,X) →
(G, Y ) is clear, simply by functoriality of all constructions when G is fixed.
The definition on morphisms for induction will be given below, together
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with the proof that they satisfy induction. We also denote by τ (G,X) the
character map χGn,p ⊗ L for X.

Lemma 4.7.1. Both functors C∗ and D∗ are homotopy invariant.

Proof. This is immediate since E∗ is homotopy invariant, the Borel con-
struction X 7→ EG ×G X is G-homotopy invariant, and the fixed points of
a G-CW complex are also G-homotopy invariant.

Lemma 4.7.2. Both functors C∗ and D∗ satisfy Mayer-Vietoris, and τ
commutes with the connecting morphisms.

Proof. The Borel construction X 7→ EG ×G X is a limit, and so are fixed
points, so they commute with pushouts. Therefore, the usual pushouts
that induce Mayer-Vietoris, give Mayer-Vietoris for our functors. Moreover,
the definition makes it clear that the character map commutes with the
connecting morphisms.

Lemma 4.7.3. Both functors C∗ and D∗ satisfy complex oriented descent.

Proof. Hopkins, Kuhn and Ravenel prove in [HKR00, 2.5] that any complex
oriented cohomology theory (and not only the cohomology theories of in-
terest to us, namely Lubin-Tate) satisfies complex oriented descent, and we
will rely on this result.

Let ξ be a G-vector bundle over X.

EG×G ξ is a G-vector bundle on EG×G X, and it satisfies F (EG×G ξ) ∼=
EG ×G F (ξ). Then the fact that E∗ satisfies complex oriented descent,
and that L is flat (see Proposition 4.3.6), imply that C∗ satisfies complex
oriented descent.

Moreover, in [HKR00, 2.6], they prove that for an abelian subgroup, A ≤ G,
the diagram XA ← F (ξ)A ⇔ F (ξ)A×XA F (ξ)A gives an equalizer diagram
in E∗-cohomology. In the situation of D∗, we use the result for A = imα
which is indeed abelian by the fact they are n commuting elements (equiv-
alently, by the fact that it is the image of an abelian group). Equalizers,
which are limits, commute with limits, and therefore commute with prod-
ucts and taking G-fixed points. Using this, and the flatness of L again, we
deduce, by Proposition 4.4.3, that D∗ satisfies complex oriented descent as
well.
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Lemma 4.7.4. Both functors C∗ and D∗ satisfy induction.

Proof. Let H ≤ G be a subgroup, and Y an H-space.

We have EG ×G (G×H Y ) ∼= EH ×H Y . Taking E∗-cohomology and ten-
soring with L gives an isomorphism C∗ (G,G×H Y )

∼−→ C∗ (H,Y ), which
shows the functoriality for this sort of morphisms, and the fact that it is an
isomorphism show that C∗ satisfies induction.

We now claim that there is a homeomorphism ϕ : G ×H Fixn,p (H,Y )
∼−→

Fixn,p (G,G×H Y ).

By definition:

G×H Fixn,p (H,Y ) = G×H
∐

α∈Hn,p

Y imα

An element here is the data of g ∈ G, α ∈ Hn,p and y ∈ Y imα. We
will denote its H-orbit by [g, α, y]. For an h ∈ H, the relation we get is
[g, α, y] =

[
gh−1, h.α, h.y

]
. An element γ ∈ G acts by γ. [g, α, y] = [γg, α, y].

Similarly, by definition:

Fixn,p (G,G×H Y ) =
∐

α∈Gn,p

(G×H Y )imα

An element here is the data of α ∈ Gn,p, [g, y] ∈ (G×H Y )imα. We will
denote this by (α, [g, y]). For an h ∈ H, the relation we get is (α, [g, y]) =(
α,
[
gh−1, hy

])
. An element γ ∈ G acts by γ. (α, [g, y]) = (γ.α, [γg, y]).

Define the map ϕ : G×HFixn,p (H,Y )→ Fixn,p (G,G×H Y ) by ϕ ([g, α, y]) =
(g.α, [g, y]).

We need to show that it doesn’t depend on the H-orbit representative in
the source, and indeed,

ϕ
([
gh−1, h.α, h.y

])
=
(
gh−1.h.α,

[
gh−1, h.y

])
=
(
g.α,

[
gh−1, h.y

])
= (g.α, [g, y])

= ϕ ([g, α, y]) .

We need to show that the element defined lands in the target, (g.α, [g, y]) ∈
Fixn,p (G,G×H Y ), i.e. [g, y] ∈ (G×H Y )g. imα. Since α ∈ Hn,p, we have

44



g. imα ≤ gHg−1, so let ghg−1 ∈ imα, and we verify that [g, y] is invariant
under it (via the G-action). Recall that y ∈ Y imα, so we get, ghg−1. [g, y] =[
ghg−1g, y

]
= [gh, y] = [g, hy] = [g, y] .

We show that it is G-equivariant. So let γ ∈ G, and indeed,

ϕ (γ. [g, α, y]) = ϕ ([γg, α, y])

= (γg.α, [γg, y])

= γ. (g.α, [g, y])

= γ.ϕ ([g, α, y])

We show that it is one-to-one. Assume ϕ ([g, α, y]) = ϕ ([g′, α′, y′]), i.e.
(g.α, [g, y]) = (g′.α′, [g′, y′]). In particular, [g, y] = [g′, y′]. It follows that
y′ = h.y and g′ = gh−1 for some h ∈ H. Then, g.α = g′.α′ = gh−1.α′,
so α = h−1.α′, equivalently α′ = h.α. We therefore conclude that they are
indeed in the same H-orbit, [g, α, y] =

[
gh−1, h.α, h.y

]
= [g′, α′, y′].

Lastly, we show that it is surjective, which is the only step which is not
routine. Let (α, [g, y]), i.e. α ∈ Gn,p, [g, y] ∈ (G×H Y )imα. We claim that
if such a triple exists, i.e. the fixed points are not empty, then necessarily
g−1.α ∈ Hn,p. Let γ ∈ im g−1.α. Since gγg−1 is in imα, it fixes [g, y],
that is [g, y] = gγg−1. [g, y] =

[
gγg−1g, y

]
= [gγ, y]. Therefore, for some

h ∈ H,
(
gh−1, hy

)
= (gγ, y), in particular γ = h−1, so γ ∈ H. It follows

that g−1.α ∈ Hn,p. We now claim that y ∈ Y im g−1.α. So let η ∈ im g−1.α,

which we now know is in H as well. Since [g, y] ∈ (G×H Y )imα, it is fixed
by gηg−1, i.e. there is some h ∈ H, s.t.

(
gh−1, hy

)
= gηg−1. (g, y) =(

gηg−1g, y
)

= (gη, y), and we get that y = ηy. We shows that y ∈ Y im g−1.α,
so the element

[
g, g−1α, y

]
is well defined, and mapped to (α, [g, y]).

It is clear that the map ϕ is continuous, and so is its inverse
[
g, g−1α, y

]
7→

(α, [g, y]), which shows that indeed D∗ satisfies induction.

Lemma 4.7.5. τ (A, ∗) is an isomorphism for all abelian groups A.

Proof. We need to verify that χAn,p : E∗ (BA) ⊗E∗ L → Cln,p (A;L) is an
isomorphism for abelian groups A.

By Proposition 4.2.3, we have Künneth for E∗ (BA), so it takes direct sums
in A to tensor products.

For an abelian group, the A-action on An,p is trivial (since it is by conju-
gation). Therefore, Cln,p (A;L) = homASet (An,p, L) = homSet (An,p, L) =
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homSet (homAb (Λ, A) , L). The homAb (Λ, A) commutes with direct sums in
the second coordinate, and the outer homSet takes them to tensor product.

Both functors take direct sums to tensor products, so by the structure the-
orem for abelian groups, we reduce to the case Z/qk for a prime q.

First we handle the case q 6= p. Again by Proposition 4.2.3, E∗
(
BZ/qk

)
is a

free module of rank 1, so the source of χ
Z/qk
n,p is L. Moreover, homAb

(
Λ,Z/qk

)
has only the trivial homomorphism, so Cln,p

(
Z/qk;L

)
= L. It is easy to see

that this is indeed an isomorphism then.

Lastly, we handle the case q = p. At this point we have to prove it separately
for every Lr with r ≥ r0, and the result follows for L as well, by taking the
colimit on both sides.

In this case the group is Z/pk, so r0 = k. Let r ≥ r0 = k. Now
(
Z/pk

)
n,p

, i.e.
n commuting p-power-torsion elements, is just n elements, so it is canonically

isomorphic to
(
Z/pk

)n
= Λk. The character map χ

Z/pk
n,p is then a morphism

E∗
(
BZ/pk

)
⊗E∗ Lr → homSet (Λk, Lr).

By Proposition 4.2.3, the source of the character map is isomorphic to
E∗ [[x]] /

([
pk
]

(x)
)
⊗E∗ Lr. Using the exponential rule, and the adjunc-

tion between the forgetful from Lr-modules to E∗-modules and − ⊗E∗ Lr,
we get that the character map is the same data as a map φ : Λk →
homLr

(
Lr [[x]] /

([
pk
]

(x)
)
, Lr
)
.

In [HKR00] the proof ends here, since they have an alternative definition
of Lr as a ring representing some functor, which makes the above map an
isomorphism almost immediately. We didn’t take this route, so we make the
connection here more explicit.

Recall the definition of Lr from Definition 4.3.1, and the definition of the
character map. Chasing the definitions, we see that for 0 6= (li) ∈ Λk, φ ((li))
is the homomorphism which sends x to

∑
F [li] (xi) ∈ Lr. Since r ≥ r0 = k,

the last element is in Sr, and in particular invertible in Lr. We now finish the
proof by applying [HKR00, 6.2] to φ, which shows that in this case indeed
the character map is an isomorphism. We remark that in their notation,
we use the result for r = k and R = Lr. Moreover, they denote by Λ∗r
the Pontryagin dual, which is isomorphic to Λr, and φ (α) in their notation
really means the value at x (as can be seen in [HKR00, 5.5]).

Proof (of the first part of Theorem 4.5.3). Follows immediately by combin-
ing the previous lemmas and Theorem 4.6.7.
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5 Elliptic Curves

At this point, one may wonder how we can find interesting pairs (k,Γ),
of a perfect field and a formal group law over it, to obtain Lubin-Tate
spectra. Two simple examples which we have already seen are the additive
formal group law over Fp, of height ∞, which gives rise to HFp, and the
multiplicative formal group law over Fp, of height 1, which gives rise to K∧p .
Elliptic curves are another source for formal group laws.

5.1 Formal Group Laws From Elliptic Curves

Let C be an elliptic curve over a ring R, with O the point at infinity. In
[Sil09, IV], there is a construction of a formal group law ΓC over R, obtained
by considering the infinitesimal neighborhood of O in C. We will also denote
by GC the corresponding formal group.

Now, assume that R = k is a finite field of characteristic p. We denote by
C [pr] the pr-torsion, i.e. the (scheme-theoretic) kernel of the multiplication-
by-pr map. By [Sil09, IV.7.5] and [Sil09, V.3.1], we have:

Proposition 5.1.1. The height of ΓC is either 1 or 2. Moreover, the height
is 2 if and only if the only point of C [pr] is O for all r ≥ 1.

In fact, there are many more equivalent conditions to the above, which can
be found in the above reference, and this is turned into a definition.

Definition 5.1.2. C is called supersingular if ΓC is of height 2.

From now on we assume that our elliptic curve is supersingular.

Similarly to the Lubin-Tate deformation theory of formal group laws de-
scribed in Section 2.7, there is a deformation theory for elliptic curves. Re-
call that ΓC over k has a universal deformation. The Serre-Tate theorem
[KM85, 2.9.1] then implies the following:

Theorem 5.1.3. There exists a deformation CU over Wk [[u1]] of C, whose
formal group law ΓCU is a universal deformation of ΓC .

In this case we get a Lubin-Tate spectrum E = E (k,ΓC). We recall from
Corollary 2.7.7 that the coefficients can be taken to be E∗ = Wk [[u1]]

[
u±1

]
where |u| = 2, and the formal group law is u (ΓC)U , which by the above can
be described by uΓCU .
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5.2 HKR From Elliptic Curves

Recall that the our main goal in HKR theory was to compute p−1E∗ (BG)
for some Lubin-Tate spectrum E. We shall focus only the 0-th level, as this
is 2-periodic in the usual way. The main result for us was Corollary 4.5.4
(stated here only for the 0-th level, and with Lr for r ≥ r0)

p−1E0 (BG) ∼=
∏

[α]∈Gn,p/(G×Aut(Λr))

(
L0
r

)StAut(Λr)(α)
.

That is, in order to compute p−1E0 (BG), we need to compute L0
r , as in

Definition 4.3.1, and various fixed-points sub-rings thereof.

Recall that we fixed some supersingular elliptic curve C over a finite field k of
characteristic p, so that ΓC is of height n = 2, and we consider E = E (k,ΓC).
As we saw in Theorem 5.1.3, we can use the deformation CU to describe the
universal deformation of the formal group. In Section 4.3.1, we have seen
that L0

r can be described as follows. First, SpecE0 (BΛr) = (GCU [pr])2.

Second, S0
r =

{
[k1] (t) +ΓCU

[k2] (s) | (k1, k2) 6= 0 mod pr
}

. And L0
r =(

S0
r

)−1
E0 (BΛr).

Now, since GC is the formal neighborhood of O in C, we have a map GC →
C. Since the multiplication on GC comes from the multiplication on C, we
have the commutative square:

GC C

GC C

[pr] [pr]

Taking the kernels of both vertical maps, we get a map GC [pr] → C [pr].
Since C is supersingular, by Proposition 5.1.1, the only point of C [pr] is
O, i.e. it is a nilpotent thickening of the point O, which means that the
map GC [pr]→ C [pr] is an isomorphism of schemes, since GC is the formal
neighborhood of O. Since the group structure on GC is inherited from that
of C, this is also an isomorphism of group schemes.

In the same way as above, we have a map between the pr-torsion of the
deformations, GCU [pr]→ CU [pr]. Reducing modulo the maximal ideal, i.e.
the map Wk [[u1]] → k, gives the map above GC [pr] → C [pr], which is
an isomorphism. By Nakayama’s lemma we see that the map GCU [pr] →
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CU [pr] is also an isomorphism of schemes, and again this is actually an
isomorphism of group schemes.

This means that in our computations of L0
r , we can use the elliptic curve

CU rather then its formal group law, as the pr-torsion groups are isomor-
phic. This has the advantage that the operations on the elliptic curve are
given by polynomials, rather then formal power series. More explicitly, we
have that SpecE0 (BΛr) ∼= (CU [pr])2, i.e. the scheme-theoretic kernel of
the multiplication-by-pr map on the elliptic curve, squared. We then need
to localize away from the zeros of the functions [k1] (−) +CU [k2] (−), for
(k1, k2) 6= 0 mod pr. As we have seen in Section 4.3.1, we can actually
consider only ki’s which are a multiple of pr−1, which means that we need
to consider only p2 − 1 pairs.

5.3 Specific Elliptic Curve

We now restrict ourselves to a special case. Take p = 2 and k = F4. We
take C to be the elliptic curve given by the Weierstrass equation y2 + y =
x3. It is supersingular as follows from [Sil09, exercise V.5.7 combined with
proposition A.1.1.c]. Another way to see that is by a direct computation of
the terms of the formal group law, which shows that the coefficient of x in
the 2-series is 2 = 0, see [Bea17, 6.1.4].

Furthermore, denote by CU the elliptic curve given by y2 + u1xy + y = x3

over Wk [[u1]] = Z2 [ζ3] [[u1]]. The maximal ideal is (1− ζ3, u1) with residue
field F4, and modulo this ideal CU reduces to C. Furthermore, in [LT66,
3.5], it is proven that the formal group law of CU is indeed a universal
deformation of that of C. Specifically, there the ring Z2 [ζ3] is denoted by
R, and u1 by t. It is claimed that the formal group law (up to order 2) is
given by x+ y+u1xy. Then, by [LT66, 1.1], it is the universal deformation,

because C2 = 1
2

(
(x+ y)2 − x2 − y2

)
= xy.

Our next goal is to compute the ring L0
r corresponding to E = E (F4,ΓC).

To that end, we first need to compute E0 (BΛr), which as we saw is given

by O
(

(CU [2r])2
)

= (O (CU [2r]))⊗2. We then need to localize away from

the zeros of [k1] (−) +CU [k2] (−). We have only 22 − 1 = 3 pairs, which
are

(
2r−1, 0

)
,
(
0, 2r−1

)
,
(
2r−1, 2r−1

)
. Note that the first two are symmetric,

and can be computed even before taking the tensor product. That is, L0
r is

given by computing O (CU [2r]) (to get the 2r-torsion), localizing away from
[2r−1] (−) (to get the points of order exactly 2r), tensoring with itself (to
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get pairs of such points), and localizing away from [2r−1] (−) +CU [2r−1] (−)
(to get such pairs that span).

Furthermore, we recall that by Proposition 4.3.6, 2 is invertible in L0
r , so the

whole computation can be carried with CU base changed to Q2 [ζ3] [[u1]], and
we will obtain the same result. Moreover, we note that the elliptic curve,
and all the operations described above, are defined already over R = Q [u1],
so we can carry the whole computation over R, and tensor in the end with
Q2 [ζ3] [[u1]] to get L0

r .

5.4 Concrete Computations

We describe a way to do the calculation described above, namely over R =
Q [u1]. We will display this along with the Macaulay2 code, that carries out
the computation. Note that the code will be at times more general then this
specific example, but not at all times.

The basic operations on the elliptic curve are developed in projective co-
ordinates. Therefore, we homogenize the elliptic curve above to X3 =
Y 2Z + u1XY Z + Y Z2. When we need to compute the steps described
above, we will work with the affine patch where Y = 1, which contains the
origin O = [0; 1; 0]. We note that in this patch we remove exactly one point
from the curve, for if Y = 0, then X3 = 0 + 0 + 0 = 0, i.e. X = 0, so we
remove only the point [0; 0; 1]. This will be useful to give a computation of
the addition map, and more specifically for the multiplication-by-2r map.

The code is given below, and what follows is an explanation of the code.

5.4.1 General Remarks

We will use in the code matrices (rather then other data types which store
a list of values), as Macaulay2 has the best support for matrices.

We note that we know a priori the ranks of all the constructions over R.

• The points of CU [pr] are isomorphic to Λr = (Z/pr)2, so this is of rank
p2r.

• The points of order exactly pr are then of rank p2r − p2(r−1).

• The points of L0
r are of rank p4(r−1)

(
p2 − 1

) (
p2 − p

)
. To see this, we

note that they have a transitive free action of Aut (Λr) = GL (2,Z/pr)
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(since we pick two elements that generate Λr). Being invertible is
equivalent to having an invertible determinant, and an element is in-
vertible in Z/pr if and only if it is non-zero modulo p. There are pr−1

ways to lift a non-zero number in Z/p to Z/pr, so there are p4(r−1)

lifts to an invertible matrix. Lastly, GL (2,Z/p) has
(
p2 − 1

) (
p2 − p

)
elements, since the first column can be any non-zero vector, and the
second must be linearly independent of it.

Knowing the ranks will be useful later on. First and foremost, as some of
our constructions will involve arbitrary choices, which might lead to a result
which is too large, but having the correct rank guarantees that our choice
is valid. Second, this is a useful sanity-check to verify our results.

5.4.2 Basic Objects

We define the basic objects concerning the computation. Note that r = 2

can be replaced in principal by any value. Moreover, we can change R =

QQ[u1] to QQ or even GF(p) if we want to work over them, and then we also
need to remove the u1 * X * Y * Z term from F.

In the code RemovedP is the point described above which is not in the affine
patch we will be using (Y = 1).

5.4.3 Util Functions

The function DivideGcd has a matrix as its input, which will always be a
list of polynomials, and outputs the matrix divided by the GCD of all of
the elements. The function comp receives two matrices of polynomials, and
computes the composition by substituting the variables. It also divides by
the GCD, which does not affect the function in projective coordinates, but
is essential in some instances to get the correct affine functions.

5.4.4 Functions on the Elliptic Curve

The first function calculated is what we call Star. This operation is used
to define the addition (as explained below), and it satisfies P1 ? P2 =
− (P1 + P2), in other words, (P1 ? P2)+P1 +P2 = O. Geometrically, P1 ?P2

is the third intersection point of the line through P1 and P2 and the el-
liptic curve. Equivalently, projectively, the line is given by tP1 + sP2, and
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we are looking for the places where F (tP1 + sP2) = 0. The two trivial
solutions are where t = 0 or s = 0. We think of F (tP1 + sP2) as a poly-
nomial in t, s. Since F is homogeneous of degree 3, all terms will have
total degree 3. The cubic terms t3 and s3 are then precisely those that are
in F (tP1) and F (sP2) respectively. We assumed that P1, P2 are on the
curve, so we can subtract these terms, and look for the non-trivial zero of
F (tP1 + sP2)−F (tP1)−F (sP2). This is now a homogeneous polynomial of
degree 3 without t3 and s3, that is, it is of the form ts (ctt+ css). Therefore
the third solution is for t = −cs and s = ct, i.e. P1 ? P2 = −csP1 + ctP2.

Now, taking P1 = P, P2 = O we get (P ? O) + P +O = O, so P ? O = −P .
This explains the introduction of Neg.

Now that we have Star and Neg we can define the addition by − (P1 ? P2).
We call this AddCalc, as this is not quiet the addition function we will be
using. This function has a problem, it vanishes on the diagonal P1 = P2,
which is precisely what we need to multiply by 2. The reason is that already
the function we denoted by Star vanishes on the diagonal, because when
P1 = P2, the line through the points tP1 + sP2 is singular (it is just the
point). However, this function is defined everywhere else. Luckily we can
use the following trick, P1 +P2 = (P1 −Q) + (P2 +Q). Specifically, we take
Q to be the removed point [0; 0; 1].

At this point we can introduce Mul2 simply by P +P . We further define the
function MulNTwoDiv which computes [n] by expanding n in binary form (if
it is divisible by 2, then [n] = [2]

[
n
2

]
, otherwise [n] = [n− 1] + id). This

gives us
[
pr−1

]
, [pr] denoted by Mulprm1 and Mulpr respectively.

5.4.5 Order Exactly pr

The next step is to compute O (CU [pr]), and its localization away from
[pr−1] (−). Then O (CU [pr]) is described as the quotient of R [x, z] (where
R = Q [u1]) by some ideal. First, we want to restrict to the curve, which
gives F (x, 1, z), this explains the first element appended to quoPr. Second,
we want only pr-torsion points, that is [pr] (x, 1, z) = O. As O = [0; 1; 0], this
is equivalent to requiring that the first and last coordinates of [pr] (x, 1, z)
are 0, this explains the second and third element appended to quoPr.

Next, we actually wish our points to be of order exactly pr (and not just
pr-torsion). To require this, we want that

[
pr−1

]
(x, 1, z) 6= O. This means

that we to ensure that two values (the first and last coordinates) are not 0
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together, so we can’t simply invert both of them (as this requires that both
are non-zero, we only need one of them to be non-zero). Note that if they
vanish together, then any linear combination of them vanishes as well, but
the other direction is not immediate. However, since there are only finitely
many points, the number of different values attained is finite, and there
are infinitely many different linear combinations over R, so there are linear
combinations that vanish if and only if the two vanish together. We can
then choose an arbitrary linear combination, and the result might be too
large, but if the rank is correct then our choice was valid. Since we a priori
know the ranks, as described in Section 5.4.1, we can verify this. It turns
out that here taking the sum of the first and last coordinates works. Now,
inverting an element x ∈ S is equivalent to adding a formal element d and
requiring it to be its inverse, i.e. x−1S = S [d] /(1− dx). This explains the
last element appended to quoPr.

We then define IPr, which is the ideal spanned by those elements, i.e. the
quotient by it gives the points of order exactly pr. Furthermore, gbIPr is a
Gröbner basis for it. The MonomialOrder used in the definition of BasePr

was found experimentally to yield faster computations (the heuristic is that x
appears with the highest power, and it determines z so z will be a polynomial
in x, and d will be a polynomial in x, z).

5.4.6 Spanning Pairs

Here we compute L0
r . First we just take the tensor product of the pre-

vious with itself, which is given simply by duplicating all the variables to
x1,z1,x2,z2,d1,d2, and all the relations (we use the Gröbner basis for
faster computation). Then, we need to localize away from the kernel of[
pr−1

]
(x1, 1, z1) +CU

[
pr−1

]
(x2, 1, z2) 6= O. We use the same trick, it turns

out that here the sum is a again a valid linear combination, and we add
another variable d3, and require it to be its inverse. The MonomialOrder

used in the definition of BaseLr0 was found experimentally to yield faster
computations (the heuristic is similar to the previous).

5.4.7 The Code

-------- Basic Objects --------

p = 2;
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r = 2;

R = QQ[u1];

A3 = R[X,Y,Z];

A33 = R[X1 ,Y1 ,Z1 ,X2 ,Y2 ,Z2];

A332 = A33[t,s];

F = X^3 - (Y^2 * Z + u1 * X * Y * Z + Y * Z^2);

Mt = matrix {{t}};

Ms = matrix {{s}};

O = matrix {{0, 1, 0}};

P = matrix {{X, Y, Z}};

P1 = matrix {{X1 , Y1 , Z1}};

P2 = matrix {{X2 , Y2 , Z2}};

RemovedP = matrix {{0, 0, 1}};

-------- Util Functions --------

DivideGcd = mat -> (

g := gcd flatten entries mat;

matrix {( flatten entries mat) // g}

);

comp = (a, b) -> (

DivideGcd(sub(a, b))

);

-------- Functions on the Elliptic Curve --------

StarCalc = sub(F, Mt * P1 + Ms * P2) - sub(F, Mt *

↪→ P1) - sub(F, Ms * P2);

StarCt = StarCalc_(t^2 * s);

StarCs = StarCalc_(t * s^2);

Star = -StarCs * P1 + StarCt * P2;
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Neg = comp(Star , P|O);

AddCalc = comp(Neg , sub(Star , P1|P2));

MovedP1 = comp(AddCalc , P1|sub(Neg , RemovedP));

MovedP2 = comp(AddCalc , P2|RemovedP);

Add = comp(AddCalc , MovedP1|MovedP2);

Mul2 = comp(Add , P|P);

MulNTwoDiv = n -> (

if n == 1 then P

else if n % 2 == 0 then comp(Mul2 , MulNTwoDiv(n

↪→ / 2))

else comp(Add , P|MulNTwoDiv(n-1))

);

Mulprm1 = MulNTwoDiv(p^(r-1));

Mulpr = MulNTwoDiv(p^r);

-------- Order Exactly p^r --------

BasePr = R[x,z,d, MonomialOrder =>{Weights => {1,

↪→ 1000 ,1000000} , Lex }];

p0 = matrix {{x, 1, z}};

quoPr = {};

quoPr = append(quoPr , sub(F, p0));

mulpr = sub(Mulpr , p0);

quoPr = append(quoPr , mulpr_ (0,0));

quoPr = append(quoPr , mulpr_ (0,2));

mulprm1 = sub(Mulprm1 , p0);
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quoPr = append(quoPr , 1 - d * (mulprm1_ (0,0) +

↪→ mulprm1_ (0,2)));

IPr = ideal quoPr;

gbIPr = flatten entries gens gb IPr;

-------- Spanning Pairs --------

BaseLr0 = R[x1 ,z1 ,x2 ,z2 ,d1 ,d2 ,d3 , MonomialOrder =>{

↪→ Weights =>

↪→ {1 ,1000 ,1 ,1000 ,1000000 ,1000000 ,3000000} , Lex

↪→ }];

p01d = matrix {{x1, z1 , d1}};

p02d = matrix {{x2, z2 , d2}};

p1 = matrix {{x1 , 1, z1}};

p2 = matrix {{x2 , 1, z2}};

quoLr0 = {};

quoLr0 = quoLr0 | (flatten entries sub(matrix{gbIPr

↪→ }, p01d));

quoLr0 = quoLr0 | (flatten entries sub(matrix{gbIPr

↪→ }, p02d));

Mulprm1 = MulNTwoDiv(p^(r-1));

mulprm11 = sub(Mulprm1 , p1);

mulprm12 = sub(Mulprm1 , p2);

addMulprm11and2 = sub(Add , mulprm11|mulprm12)

quoLr0 = append(quoLr0 , 1 - d3 * (addMulprm11and2_

↪→ (0,0) + addMulprm11and2_ (0,2)));

ILr0 = ideal quoLr0;

gbILr0 = flatten entries gens gb ILr0;
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