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To situate this talk in the seminar, recall that we are interested in an action of S1 on
Catst

∞, specified by the E2-map

Z ∼−−→ Ω2BU(1) −−→ Ω2(Z × BU) ∼−−→ Z × BU J−−→ Pic(S).
In this talk, we shall be interested in the third map – the Bott periodicity isomorphism.
This is in fact an isomorphism of E∞-spaces, but our goal is to understand it as an
E2-map, via a topological model.
Let us begin with some opening remarks on the E2-structures on both sides, start-
ing with Z × BU. Consider the topologically enriched category VectC of finite dimen-
sional complex vector spaces, and where hom(V,W ) is topologized via the isomorphism
with Cdim V ×dim W . Observe that the associated ∞-category N(VectC) is trivial, since
hom(V,W ) is contractible (note that therefore in this talk it is important to distinguish
between topological constructions and their homotopical counterparts). Nevertheless,
we may consider the maximal topologically enriched groupoid, with its associated non-
contractible space

N(Vect≃
C ) ≃

∐
BU(n).

Endow VectC with the symmetric monoidal direct sum, thereby making ∐ BU(n) into
an E∞-monoid, which in turn induces an E∞-group structure on the group completion

(
∐

BU(n))gpc ≃ Z × BU.

Moving on to Ω2(Z × BU), the E2-group structure comes from the double loop space
structure. We see that the E2-structures are of, a priori, completely different nature.
In practice, it is more convenient to move the two structures to the same side. By the
B ⊣ Ω adjunction, an E2-map

(
∐

BU(n))gpc ≃ Z × BU −−→ Ω2(Z × BU)
is the same data as a (pointed) map

B2(
∐

BU(n)) −−→ Z × BU.
Warning: this map is not an isomorphism – the left-hand side is 2-connective and the
map is an isomorphism onto {0} × BU.
Our plan is to construct topological models for Z × BU and B2(−), and the map.
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1 Characterization of the Bott map

We begin with the formal characterization of the Bott map, up to multiplication by an
integer. In this talk we will not determine the integer – this is left for future talks.

We would like to be able to study maps

B2(
∐

BU(n)) −−→ Z × BU.

Note that BU(1) acts on everything in sight, corresponding to tensoring with a line
bundle, and the map is equivariant with respect to this action. A non-coherent version
of this equivariance already characterizes the Bott map.

Proposition 1. Let θ : B2(∐ BU(n)) −−→ Z × BU be a map such that the following
diagram

BU(1) × B2(∐ BU(n)) BU(1) × Z × BU

B2(∐ BU(n)) Z × BU

Id×θ

θ

commutes, then θ is homotopic to an integer times the Bott map qβ.

Proof. The Bott map produces an isomorphism

B2(
∐

BU(n)) ∼−−→ BU,

which identifies our map with

θ : BU −−→ Z × BU.

Letting ι : BU ↪−→ Z × BU denote the inclusion, we need to show that θ ≃ qι. Note
that Z × BU represents topological K-theory, namely we need to show their equality as
classes in KU0(BU).

Let KUQ denote the rationalization, and denote by θn, ιn the images in KU0
Q(BU(n)).

We shall prove the following:
Claim. For all n ≥ 1, there is a rational number qn such that θn = qnιn.

This will suffice: The compatibility over n implies that qn = q is independent of n.
Moreover, the fact that

Z[[t]] ≃ KU0(BU(1)) → KU0
Q(BU(1))

is injective implies that q is an integer. As KU0(BU) ∼−−→ lim KU0(BU(n)) we get that
θ = qι.
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Let us prove the claim. Fix n. Recall that KU0
Q(BU(n)) ≃ Q[[x1, . . . , xn]], where xi is

the i-th Adams operation ψi applied to [En] − n, where En is the tautological vector
bundle. The class ιn is identified x1, and θn is some formal power series

f(x1, . . . , xn) =
∑

ae1,...,enx
e1
1 · · ·xen

n ∈ Q[[x1, . . . , xn]].

We now show the vanishing of almost all coefficients, using the condition from the
proposition. We similarly have KU0

Q(BU(1) × BU(n)) ≃ Q[[t, x1, . . . , xn]] where t =
[E1]−1. The commutativity of the square, together with the fact that Adams operations
on lines bunles is given by ψi([L]) = [L]i, translates to

f(x1, . . . , xn) · [E1] = f(x1[E1]1, . . . , xn[E1]n).

Comparing coefficients, we conclude that

ae1,...,en(1 + t) = ae1,...,en(1 + t)1e1+···+nen .

Thus, ae1,...,en must vanish unless e1 = 1 and ei = 0 for i > 1, and we conclude that
γn = f(x1, . . . , xn) = a1,0,...,0x1 = a1,0,...,0ιn, as required.

2 Topological model for Z × BU

Recall that Z × BU is the group completion N(Vect≃
C )gpc. We’d like to implement the

group completion on the topological side. Intuitively then, we need some category whose
objects are formal differences W − V . In the end we would like to to identify W − V
and (W ⊕ U) − (V ⊕ U), which complicates things.

Definition 2. We define the topologically enriched category Vect±
C as follows.

• Objects: a pair (V,W ) of finite dimensional complex vector spaces.

• Morphisms: a morphism from (V,W ) to (V ′,W ′) is a pair of injective maps V ↪→
V ′,W ↪→ W ′ and a subspace U ≤ V ′ ⊕W ′ such that the maps

V ⊕ U −−→ V ′, W ⊕ U −−→ W ′

are isomorphisms.

Observe that there is a morphism from (V,W ) to (V ′,W ′) if and only if dimV ′−dimV =
dimW ′ − dimW = d ≥ 0. The topology is the subspace topology from

hom(V, V ′) × hom(W,W ′) × Grd(V ′ ⊕W ′).
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The map from (V,W ) to (V ⊕U,W ⊕U) is by choosing U ≃ ∆U ≤ (V ⊕U) ⊕ (W ⊕U).
Another consequence of the above is that there are only maps between objects of the
same virtual dimension dimW − dimV .

Note that this is not a groupoid, hence N(Vect±
C ) is an ∞-category and not an ∞-

groupoid. We now wish to describe the space N(Vect±
C )gpd obtained by inverting all

morphisms. Observe that there is an obvious map

VectC −−→ Vect±
C , W 7→ (0,W ).

Proposition 3. There is the dashed isomorphism, fitting into a commutative diagram

∐ BU(n) Z × BU

N(Vect≃
C ) N(Vect±

C )gpd

≀ ≀

Proof. Recall that there are only maps between objects of the same virtual dimension.
Let’s denote by Vect(d)

C ⊂ Vect±
C the subcategory on those (V,W ) with virtual dimension

dimW − dimV = d. Our goal is to show that N(Vect(d)
C )gpd ≃ BU.

We define an auxiliary topologically enriched category C as follows.

• Objects: vector spaces V of dimension dimV ≥ d.

• Morphisms: a morphism from V to W is a an injection f : V ↪→ W together with
n elements w1, . . . , wd ∈ W whose image in W/f(V ) form a basis.

Claim. N(C)gpd ≃ BU.
Claim. N(C)gpd ≃ N(Vect(d)

C )gpd.

Let’s start with the first claim. We have a map dim: C → Z≥d, inducing dim: N(C) →
Z≥d. The fiber over n is BU(n). Letting F : Z≥d → Cat∞ denote the unstraightening,
we see that

N(C)gpd = colim(F gpd) = colim(BU(n)) = BU.

Moving on to the second claim, observe that we have a functor C → Vect(d)
C sending V

to (Cdim V −d, V ), and we will show that N(C) → N(Vect(d)
C ) is cofinal, hence induces an

isomorphism on groupoidifications. We use Quillen’s theorem A, we need to show that
for any (V,W ) ∈ Vect(d)

C , the slice

D := N(C) ×N(Vect(d)
C ) N(Vect(d)

C )(V,W )/

is contractible. Consider the composition dim: D → N(C) → Z≥d. Arguing as above,
Dgpd is the colimit of the fibers, so it suffices to show that the become more and more
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connected. The fiber over n is some object of N(C), i.e. Cn up to isomorphism, together
with a map, that is

Map((V,W ), (Cdim V −n,Cn))/GLn(Cn),

which one computes to see is 2(n− dimV )-connected (for n ≥ dimV ), as required.

3 Topological model for double bar construction

Recall that in Avital’s (second) talk, she introduced a way to model E2-algebras.

Definition 4. We define the category O⊗ with:

• Objects: (D1, . . . , Dm) tuples of disks in C.

• Morphisms: a morphism to (D′
1, . . . , D

′
n) is a pointed morphism

α : {1, . . . ,m, ∗} −−→ {1, . . . , n, ∗}

such that for each 1 ≤ j ≤ n the disks {Di}i∈α−1(j) are pairwise disjoint and
contained in D′

j .

Proposition 5. Let E be a symmetric monoidal ∞-category, then there is a fully faithful
embedding

AlgE2(E) ↪→ AlgO(E)

whose essential image is those O-algebras A such that for any inclusion of disks D ⊆ D′,
the map A(D) → A(D′) is an isomorphism.

In particular, an E2-∞-category (resp. space) is the same data as a functor A : O⊗ →
Cat∞ (resp. to S) satisfying:

1. The map A(D1, . . . , Dm) → A(D1) × · · · ×A(Dm) is an isomorphism.

2. For D ⊆ D′, the map A(D) → A(D′) is an isomorphism.

Our next task is to use this to describe the double bar construciton B2A of such A.

Definition 6. We let O◦ ⊂ O⊗ be the (non-full non-wide) subcategory on:

• Objects: (D1, . . . , Dm) pairwise disjoint.

• Morphisms: α is in if and only if for every i such that 0 ∈ Di, we have α(i) ̸= ∗.

Proposition 7. Let A : O⊗ → S represent some E2-space, then

B2A ≃ colimA|O◦ .
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Proof sketch. We begin by constructing a map F → B2. Recall that B ⊣ Ω. For X ∈ S∗,
the E2-space Ω2X : O⊗ → S is given by Ω2X(D1, . . . , Dm) = ∏ Map∗(Dc

i , X). Recalling
that in O◦ the disks are disjoint, we construct a map

Ω2X|O◦(D1, . . . , Dm) → X, (f1, . . . , fm) 7→
{
fi(0) ∃i : 0 ∈ Di

x0 otherwise

which assembles into a map F (Ω2X) = colim Ω2X|O◦ → X. Apply to X = B2A to get
F → B2.
Next, we reduce to free E2-algebras. B2 commutes with all colimits since it is a left ad-
joint. From the model, F commutes with sifted colimits. Recall E2-spaces are generated
under sifted colimits from A = Free(S), ranging over finite sets S, so we are reduced to
showing that the map is an isomorphism for such A.
For that case, we recall that the free E2-space on an space X is explicitly constructed as
a configuration space of 2-dimensional disks labeled by X. This can also be identified
with Ω2Σ2X+. We therefore wish to identify B2 Free(S) ≃ Σ2(S+), which is a certain
colimit, with the colimit over O◦ of the configuration space description of, which is done
by certain cofinality arguments.

One advantage of this construction is that it makes it easier to build maps out of the
double bar construction, since mapping out of a colimit is doable.
The next observation is that sometimes we can make this colimit live in the topological
world, via unstraightening. The point is that for F : I → Cat∞ with unstraightening
E → I, we have Egpd ≃ colim(F gpd). Thus, we wish to describe the unstraightening in
topological situations.

Definition 8. Let C be a symmetric monoidal topologically enriched category. We
define a topologically enriched category O[C]⊗ with:

• Objects: ((X1, D1), . . . , (Xm, Dm)) a tuple of objects of C and disks.

• Maps: α as above, and for each 1 ≤ j ≤ n a map⊗
i∈α−1(j)

Xi −−→ X ′
j .

Clearly O[C]⊗ lives over O⊗ = O[∗]⊗, and N(O[C]⊗) is the unstraightening of the corre-
sponding O-algebra.

Corollary 9. Let C be a symmetric monoidal topologically enriched category, then

B2(N(C)gpd) ≃ N(O◦ ×O⊗ O[C]⊗)gpd.

Example 10. We have

B2(
∐

BU(n)) ≃ B2(N(Vect≃
C )) ≃ N(O◦ ×O⊗ O[Vect≃

C ])gpd.
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4 Topological model for the Bott map

Recall that our goal is to construct a map

B2(
∐

BU(n)) −−→ Z × BU.

We have already constructed topological models for the source and the target as

O◦ ×O⊗ O[Vect≃
C ]⊗, Vect±

C .

Our next goal is to construct a suitable map, in fact to the opposite of the target. Since
these are simply topologically enriched categories, this is quite a tractable thing to do.

Objects

Recall that an object of the target is simply a pair (V,W ), thought of as W − V . Also,
recall that B2(∐ BU(n)) ≃ BU is the 2-connective cover of Z × BU, so the map should
land in virtual dimension 0 ∈ Z.
An object of the source is ((V1, D1), . . . , (Vm, Dm)) (where the disks are pairwise disjoint).
We simply map

((V1, D1), . . . , (Vm, Dm)) 7→ (
⊕

Vi,
⊕

Vi).

Morphisms

Starting again with the target, a morphism from (V,W ) to (V ′,W ′) is a pair of injective
maps V ↪→ V ′,W ↪→ W ′ together with a subspace U ≤ V ′ ⊕W ′ such that the maps

V ⊕ U −−→ V ′, W ⊕ U −−→ W ′

are isomorphisms.
Now, a map to ((V ′

1 , D
′
1), . . . , (V ′

n, D
′
n)) is a pointed morphism

α : {1, . . . ,m, ∗} −−→ {1, . . . , n, ∗}

(such that {Di}i∈α−1(j) are pairwise disjoint and contained in Dj , and if 0 ∈ Di then
α(i) ̸= ∗), together with isomorphisms

fj :
⊕

i∈α−1(j)
Vi

∼−−→ V ′
j .

Note that we may have f(i) = ∗, hence no map from Vi. Thus these combine into an
inclusion

ι :
⊕

V ′
j

⊕
f−1

j−−−−→
⊕

f(i)̸=∗
Vi ↪−→

⊕
Vi,
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which also explains why we take op in the target.
We are thus left accounting for ⊕

f(i)=∗ Vi. I am not certain why Lurie doesn’t take
U = ∆⊕

f(i)=∗ Vi
, and take the map

(
⊕

V ′
j ,

⊕
V ′

j ) → (
⊕

Vi,
⊕

Vi)

to be the one determined by (ι, ι,∆⊕
f(i)=∗ Vi

). Presumably this ends up not giving the
Bott map. Instead, Lurie takes a certain modification.

Modification

Lurie defines a modification of O[Vect≃
C ]⊗, which is not a topologically enriched category,

but rather a topological category, that is, the collection of objects is also made into a
topological space. Note that above the disks didn’t play a role in the construction of the
functor (of course, they affect the source, since the colimit is over O◦ which is all about
the disks). The new category is going to add endomorphisms of the vector spaces, with
eigenvalues constrained by the disks.

Definition 11. Let D ⊂ C be a disk, and let V be a vector space. A D-endomorphism
of V is an endomorphism whose eigenvalues are in D, which we collect into EndD(V ) ⊂
End(V ).

Definition 12. We define a topological category Vect≃,⊗
C as follows.

• Objects: ((V1, D1, ϕ1), . . . , (Vm, Dm, ϕm)) where ϕi is a Di-endomorphism of Vi.

• Morphisms: a pointed morphism

α : {1, . . . ,m, ∗} −−→ {1, . . . , n, ∗}

with {Di}i∈α−1(j) disjoint and contained in D′
j , isomorphisms

fj :
⊕

i∈α−1(j)
Vi

∼−−→ V ′
j ,

such that the following diagram commutes
⊕

i∈α−1(j) Vi V ′
j

⊕
i∈α−1(j) Vi V ′

j

∼

⊕
ϕi ϕ′

j

∼

The topology is the minimal making the forgetful (forgetting ϕ’s) to O[Vect≃
C ]⊗ continu-

ous, that is, the objects are discrete in the V and D directions, having the ∏ EndDi(Vi)
topology, and the morphisms are similarly topologized via the fj ’s as before.
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It is quite clear that the map Vect≃,⊗
C → O[Vect≃

C ]⊗ induces an isomorphism on groupoid-
ifications: All that needs to be checked is that EndD(V ) is always contractible, and can
explicitly write a deformation retract onto z0IdV for any arbitrary z0 ∈ D. Therefore,
we may as well work with this new category, constructing a map

O◦ ×O⊗ Vect≃,⊗
C −−→ Vect±,op

C .

We make small modifications. On objects, we still take

((V1, D1, ϕ1), . . . , (Vm, Dm, ϕm)) 7→ (
⊕

Vi,
⊕

Vi).

On morphisms, we still let

ι :
⊕

V ′
j

⊕
f−1

j−−−−→
⊕

f(i)̸=∗
Vi ↪−→

⊕
Vi.

However, we take U ≤
⊕

f(i)=∗ Vi ⊕
⊕

f(i)=∗ Vi to be the graph

Γ⊕
f(i)=∗ ϕi

= {((vi), (ϕi(vi))}.

Corollary 13. This construction gives rise to a map of topological categories

O◦ ×O⊗ Vect≃,⊗
C −−→ Vect±,op

C ,

which on N(−)gpd induces a map

B2(
∐

BU(n)) −−→ Z × BU

homotopic to an integer multiple of the Bott map.

Proof. It is clear that all constructions are compatible with tensoring with a 1-dimensional
vector space, so we are in the situation of the proposition from the beginning.
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